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Abstract—Optical metasurfaces composed of precisely engineered nanostructures have gained significant attention for their ability to
manipulate light and implement distinct functionalities based on the properties of the incident field. Computational imaging systems
have started harnessing this capability to produce sets of coded measurements that benefit certain tasks when paired with digital
post-processing. Inspired by these works, we introduce a new system that uses a birefringent metasurface with a polarizer-mosaicked
photosensor to capture four optically-coded measurements in a single exposure. We apply this system to the task of incoherent
opto-electronic filtering, where digital spatial-filtering operations are replaced by simpler, per-pixel sums across the four polarization
channels, independent of the spatial filter size. In contrast to previous work on incoherent opto-electronic filtering that can realize only
one spatial filter, our approach can realize a continuous family of filters from a single capture, with filters being selected from the family
by adjusting the post-capture digital summation weights. To find a metasurface that can realize a set of user-specified spatial filters, we
introduce a form of gradient descent with a novel regularizer that encourages light efficiency and a high signal-to-noise ratio. We
demonstrate several examples in simulation and with fabricated prototypes, including some with spatial filters that have prescribed
variations with respect to depth and wavelength.
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1 INTRODUCTION

THere is a rich history in computational imaging of
using measurements that are “coded”, meaning they

are recorded by photosensor arrays that are coupled with
task-specific, spatially-modulating optics. Multi-shot sys-
tems record two or more of these coded measurements
sequentially over time, often through dynamic aperture
patterns that are implemented by mechanized optics or con-
trollable spatial light modulators. By combining the coded
measurements with suitable digital processing, multi-shot
systems have played an important role in depth sensing [1]–
[4], wavefront sensing [5]–[7], light field imaging [8] and
hyperspectral imaging [9]–[12].

Motivated by a desire for improved temporal resolution,
there is also work on systems that capture multiple coded
measurements in a single exposure. Most of these use a
Bayer-like photosensor, which has a pixel-aligned mosaic
of three spectral filters, in conjunction with a wavelength-
dependent spatial modulator that induces distinct codes on
the three channels. Early examples use this approach to
acquire depth maps, all-in-focus images, or hyperspectral
images [13]–[16]. Improvements to functionality and perfor-
mance have continued, using the conventional three spectral
channels (e.g. [17], [18]) or more spectral channels [19].

Analogous to Bayer or spectrally-mosaicked filter arrays,
photosensors with interleaved polarization filters are now
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also quite common [20]–[22]. These measure four linear
polarization channels and provide a new avenue for snap-
shot multi-coded imaging. For example, the recent work
of Ghanekar et al. [23] uses two of the four polarization
channels with a task-specific, polarization-dependent spa-
tial modulator for snapshot depth imaging. In our work, we
aim to expand the capabilities and potential of multi-coded
imaging with polarization.

Specifically, we explore the design and functionality of
a new snapshot system that uses a birefringent metasurface
and a polarizer-mosaicked photosensor, as depicted in Fig-
ure 1a. While there are other polarization-dependent optical
components that may be used for spatial modulation at
the aperture plane, metasurfaces stand out for their ability
to produce distinct, spatially-varying transformations of an
incident field for different polarization states [24]. We apply
our system to the task of opto-electronic filtering, where the
digital spatial filtering operation on an image is replaced by
the weighted, pixel-wise summation of the four optically-
encoded measurements captured on the sensor’s four polar-
ization channels. This task is inspired by classical work on
optical image processing [25], [26], where a filtered image
of a scene is synthesized by the pixel-wise subtraction of
two (unpolarized) coded measurements, captured simulta-
neously using a beamsplitter and distinct modulators placed
in parallel optical paths.

The technical heart of our paper is an approach to solve
a related class of computational design problems which we
call multi-image synthesis problems. In the simplest case, we
are given the specification of two real-valued spatial filtering
kernels f (1)(u, v), f (2)(u, v), along with the depth z and
wavelength λ of an ideal axial point source. For these, we
aim to design the arrangement of nanostructures on the
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Fig. 1. (a) Our system includes a birefringent metasurface and a
polarization-mosaicked sensor, optionally preceded (see text) by a stan-
dard linear polarizer and narrow-band spectral filter. The metasurface
comprises nanofins with varying widths wx, wy . Each nanofin imparts
local phase delays ϕx, ϕy (in radians) to two linear polarization states
(in addition to amplitude modulations, not shown here). (b) Visualization
of the local phase delays imparted by a single nanofin as a function of
its widths, as computed by a field solver for incident light of wavelength
532nm. White areas cannot be imparted by any pair of widths in this
range.

metasurface such that the spatial-polarimetric interference
pattern they induce on the sensor yields four, non-negative
per-channel point spread functions (PSFs) hc(u, v) that can
synthesize the specified filters via pixel-wise linear combi-
nations:

f (i)(u, v; z, λ) ≈
∑

c

α(i)
c hc(u, v; z, λ), c ∈ {0◦, 45◦, 90◦, 135◦}

for some set of digital weights α(1)
c , α

(2)
c ∈ R.

We solve these problems by using a pre-trained multi-
layer perceptron (MLP) to differentiably map the collection
of nanostructure shapes, parameterized by roughly 107 total
parameters, to their optical responses. We then use gradient
descent through a differentiable field propagator to find
the set of nanostructures and digital weights that locally
minimize the approximation error. In doing so, we find it
necessary to introduce a new regularizer that constrains
the solution space and encourages the per-channel point-
spread functions to be light-efficient, spatially compact, and
mutually orthogonal.

We highlight that, in theory, the four coded measure-
ments captured by the sensor’s four linear polarization
channels cannot be independently designed, because the
specification of two PSFs h0◦ , h90◦ uniquely determines the
others. However, we show experimentally that relaxing the
design specification to allow h0◦ , h90◦ to be merely close
to their target PSFs over a finite domain provides enough
flexibility for h45◦ , h135◦ to be separately and usefully de-

signed. This observation can be exploited not just for our
spatial filtering objective, but for any task that uses linear
polarization sensors for snapshot coded imaging.

Like previous approaches to opto-electronic filtering, our
system uses optics to reduce the computational complexity
of spatial filtering operations to a pixel-wise summation that
is independent of filter size. However, compared to previous
approaches it offers several advantages. First, it is compact
because it avoids beamsplitters and other bulky refrac-
tive elements. Second, by increasing the number of coded
measurements from two to four, it can synthesize spatial
filtering operations corresponding to any linear combination
of two target filters (and thus an infinite set of spatial
filtering kernels) by changing only the digital summation
weights. Third, the spatial filtering kernels can be designed
to match a prescribed depth or wavelength dependence,
thereby producing synthesized images that have no equiva-
lent post-capture, digital counterparts. Fourth and finally, by
capturing multiple images on distinct polarization channels
instead of spectral channels, we can enforce the functionality
of the system without introducing assumptions about the
scene’s material properties. As a result, this is the first
compact (single-optic) demonstration of snapshot incoher-
ent image processing suitable for real-world scenes.

We apply our system to various optical image processing
tasks and perform evaluations in simulation and with a
prototype camera. Visit the project page1 for more discus-
sion. In addition to providing the code and data for the
specific results in this paper, we also create and release a
much larger open-source package, called D-Flat, for com-
prehensive end-to-end metasurface design2. We summarize
the contributions of this paper as follows:

• We propose a metasurface-based architecture to cap-
ture four images simultaneously on different polar-
ization channels. Although the measurements are
theoretically not independent, we demonstrate that
in practice they can all be engineered and utilized.

• We introduce a generalization of two-channel opto-
electronic filtering to multiple channels and demon-
strate that gradient descent with a suitable regu-
larizer can find solutions that operate well under
standard imaging conditions.

• We design several image-synthesis systems that dis-
play new functionalities relative to previous work
by virtue of metasurface co-optimization. We present
validation for the design theory by comparison to
numerical field solvers and experiment.

2 RELATED WORK

2.1 Metasurface Optics
Metasurfaces are a class of recently matured optical devices
that consist of sub-wavelength scale structures patterned
on a planar, transparent substrate. By judiciously selecting
the shape of each nanostructure, the local polarization- and
wavelength-dependent optical response can be customized.
Moreover, by tailoring the arrangement of nanostructures

1. https://deanhazineh.github.io/publications/Multi Image
Synthesis/MIS Home.html

2. https://github.com/DeanHazineh/DFlat
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across the surface, metasurfaces can focus light with high
efficiency and can produce structured PSFs that complement
downstream computational tasks [27], [28]. Detailed reviews
outlining the development and theory of optical metasur-
faces can be found in [24], [29], [30]. Previous metasurface-
based systems for snapshot coded imaging have used
panchromatic sensors and have captured their coded mea-
surements by designing the optic to induce their (two or
four) distinct measurements at spatially-offset locations on
the sensor [31]–[34]. In contrast, our system superimposes
its coded measurements at the same spatial location on
a sensor, and it uses the sensor’s polarization mosaic to
separately sample them.

2.2 Neural Representations
In Section 3.3, we introduce an MLP to efficiently model
the mapping from a nanostructure’s shape to the optical
modulation it imparts on an incident field. This builds
on a history of applying deep learning to tasks in nano-
photonics, as reviewed in [35], [36]. Most similar to us are
uses of fully connected neural networks for mapping shape
to broadband phase [37]–[41]. However, our work differs by
using neural models in an end-to-end optimization frame-
work, which is reflected in differences in our architecture.
Besides predicting the phase and transmittance for two
polarization states, we include wavelength as an input to
our MLP which provides a low-dimensional input/output
mapping that is similar to coordinate-MLPs [42].

2.3 Incoherent Spatial Filtering
Opto-electronic filtering with incoherent light has recently
been revisited in [43], [44], where a photonic crystal slab
or a multi-layer film is coupled with a refractive lens. In
both cases, the optical responses at two narrow wavelength
bands are engineered to create two coded measurements
that are captured at the photosensor using an array of
spectral filters. These two types of optical modulators work
by imparting a transmission that is dependent on the angle
of incidence, and because of this, they can only reshape
the Gaussian PSF of the refractive lens and cannot produce
more general PSFs like we show in this paper. Moreover,
these methods require that all objects in the scene emit light
of equal intensity at the two designed wavelength bands,
which cannot be enforced in practice and limits their utility.

2.4 Constrained Matrix Factorization
The optimization task that we encounter in this paper is
loosely related to prior work on finding constrained matrix
factorizations. Specifically, an optimization problem that is
related to our main objective is

argmin
H≥0,A

∥F −HA∥2 , (1)

where the columns of F ∈ RN×2 are a pair of spatially-
discretized target filters to be realized by synthesis. The four
columns of H ⊂ RN×4

≥0 are the four (non-negative) compo-
nent PSFs produced by the optical system and captured at
the photosensor, and the two columns of A ∈ R4×2 are the
sets of digital image weights. Objective (1) has been called
semi-nonnegative matrix factorization or semi-NMF [45].

In contrast to us, previous work has explored problems
of this form for situations where the columns of F outnum-
ber the columns of H , and where the recovered H and
A provide clustering or dimensionality reduction. In that
context, one usually iterates between updates of H and A;
see [46] for an early review. In our case, we use gradient
descent because it allows for the incorporation of conditions
that are specific to our domain, namely that the columns
of H are nonlinearly parameterized by the metasurface
shapes and outnumber the columns of F ; and that neither
nonnegativity nor orthogonality constraints are applied to
weights A.

3 PROPOSED METHOD

In this section, we present a method to solve the optimiza-
tion problem described in the introduction. In doing so, we
rely on the principle of incoherent image formation based
on the point-spread function (PSF). A simple model follows
from imagining a scene to be composed of planar, emitting
surfaces at various depths, which are each parallel to the
image sensor and do not occlude each other within the
field of view. For a polarization channel denoted by c, the
spectrally-integrated intensity distribution in that channel
at the photosensor plane Ic(u, v) can be approximated by
the spectral sum of 2D spatial convolutions between the
depth-dependent and wavelength-dependent PSF hc and
the (magnified) scene radiance Ic via

Ic(u, v) =
∑

λ

Ic(u, v, z;λ) ∗
(u,v)

hc(u, v, z;λ). (2)

From the linearity of convolution, it is clear that a pixel-
wise linear combination of such measurements

∑
c αcIc is

equivalent to spatially filtering the scene radiance with an
effective “net PSF” given by

∑
c αchc. In what follows, we

use polarization channels to capture measurements Ic, and
so we assume that the scene emits light that is unpolarized,
meaning Ic = I, ∀c. In practice, we can ease this assump-
tion by placing a linear polarizer at the entrance of the op-
tical system, as shown in Figure 1a. The relative orientation
of the polarizer is chosen to project equal intensity on two
specific linear polarization states.

3.1 Metasurface Point Spread Function
In this work, we define the relationship between the meta-
surface and the point-spread function hc by employing a
standard cell-based treatment, whereby the metasurface is
considered as the composition of smaller building blocks
[27]. While summarized here, a detailed review of the design
theory can be found in [47].

We define the metasurface Π as a collection of cells on a
regular grid of points χ. The nanostructures in each cell may
then be specified using a set of shape parameters π. Here,
we consider 350 nm wide square cells that each contain a
single 600 nm tall nanofin, parameterized by the fin widths
wx and wy , i.e.,

Π = {π(x′, y′)|(x′, y′) ∈ χ}; π(x′, y′) = (wx′ , wy′). (3)

We use an electromagnetic field solver to compute solutions
to Maxwell’s equations and create samples of the map-
ping O from the cell to its local optical response, given by



Fig. 2. (a) A pre-trained MLP provides an efficient, differentiable proxy
for the nanofin field solver (FDTD). It maps shape parameters and inci-
dent wavelength to phase and transmittance values for two polarization
states. Phase is wrapped to 2π as drawn. (b,c) Comparisons between
FDTD and MLP outputs at 5x the resolution used for pre-training, for (b)
fixed wavelength λ = 532 nm and (c) fixed nanofin width wy = 180 nm.

the wavelength-dependent amplitude transmittance tc and
phase delay ϕc imparted to an incident wavefront,

O (π(x′, y′), λ) = tc(x
′, y′)eiϕc(x

′,y′). (4)

We then approximate the phase and transmittance profiles
of the full metasurface by stitching together the spatial grid
of per-cell responses.

Notably, since the cells are sub-wavelength, its optical
response should in fact be dependent on the nanostructures
present in neighboring cells. To enable the treatment of a cell
as an independent building block, however, a key assump-
tion that is made in the design theory is the application of
periodic boundary conditions when solving for the field. By
utilizing periodic boundary conditions, we obtain an approx-
imation to the true local optical response that is independent
to the selection of cells at other locations on the metasurface.
In practice, it is observed that this assumption is sufficiently
accurate to describe composite, aperiodic devices as long as
the spatial gradients ∇π are generally small. In supplement
S2, we validate this treatment by designing reduced-size
versions of the metasurfaces presented in the results section.
We compare the optical response and the PSF obtained
when solving for the full field across the metasurface to that
obtained when utilizing the cell approach and find close
agreement.

Fig. 3. Qualitative depiction of the PSF calculation, shown in 1D. The
intensity distribution at the sensor plane (green stems) is computed over
a finite simulation region and is optimized to match a target signal (black
line) over that domain and only up to scale. Energy that is scattered
outside of the calculation region is considered lost and reduces the
focusing efficiency of the metasurface.

We compute the mapping in Equation (4) for nanofins
made of titanium dioxide (TiO2) using a commercial finite-
difference time-domain (FDTD) solver, assuming normally
incident light of two orthogonal polarization states (0◦, 90◦),
chosen to be aligned with the x and y axis of χ. The optical
response need only be computed for a pair of orthogonal
linear polarization states since the response for all other in-
plane incident angles may be obtained by a change of basis.
More details of the simulation are provided in supplement
S1. We sweep nanofin widths between 60 and 300 nm, re-
sulting in a dataset of 2304 cell instantiations, and compute
the optical response for wavelengths between 300 and 750
nm. Slices from this dataset are displayed in Figure 2b-c.

This set of optical responses constrains the space of
possible polarization- and wavelength-dependent PSFs that
can be produced by the metasurface. For incident light of a
single wavelength λ = 532 nm, we show in Figure 1b that
the local phase delays, ϕx, ϕy , imparted to the two polar-
ization states approximately span the full range (wrapped
to 2π) and can be nearly decoupled. We may then consider
that a metasurface assembled from a collection of these cells
can be used to realize two distinct, spatially varying phase
modulations and can produce a pair of PSFs that can be
(approximately) independently designed.

Given the phase and transmittance defined across the
metasurface (applied linearly to an incident, spherical wave-
front originating from an axial point-source), we obtain the
complex PSF at the photosensor a distance d after the optic
by per-channel propagation using the Fresnel diffraction
equation [48], given in integral form via,
√
hc(u, v; z)e

iψc(u,v;z) =

∫∫
Tc(x, y)Q(u, v;x, y)dxdy (5)

where Tc corresponds to the wavefront after the metasurface
and Q is the standard Fresnel kernel,

Tc(x, y) = tc(x, y)e
iϕc(x,y)

eikr

r
for r =

√
x2 + y2 + z2

Q(u, v;x, y) =
eikd

iλd
exp

[
ik

2d

(
(x− u)2 + (y − v)2

)]
.

(6)



Fig. 4. Visualization of the phase ψ0◦ and intensity h0◦ (insets) at the
photosensor plane for a phase-only optic optimized according to Equa-
tion (8). The target intensity distribution was a uniform disk. A cosine-
similarity (sim) loss function was used in (a) while the L1 loss was used
in (b). The text percent denotes the focusing efficiency for that particular
solution. Different intensity approximations to the target distribution, and
thus different output phase distributions, can occur by errors in the
intensity within the simulation region or by discarding energy outside
of the simulation region. Using a focusing-lens initialization (c) and a
random phase initialization (d), a pair of phase profiles for the optic are
optimized to approximate specified intensity distributions on h0◦ , h90◦
(uniform disk) and on h45◦ , which is formed from the interference.

In carrying out this calculation, we define a finite sim-
ulation region S ⊂ R2 at the sensor plane, comprised of
a uniform grid of points centered around the optical axis.
Due to computational constraints, this region covers an area
that is smaller than the actual dimensions of the intended
photosensor (see Figure 3 for a qualitative diagram). No-
tably, light that is scattered outside of the simulation region
is undesirable as it reduces both the contrast and the signal-
to-noise ratio of images formed by the system. To quantify
the amount of light that is deflected away, we evaluate as a
metric the focusing efficiency, which is defined as the fraction
of incident light on the metasurface that is transmitted and
scattered within the simulation region. In the remainder, we
use the shorthand hc to denote the intensity and ψc the
phase of the field that is induced on the simulation region.

3.2 Interference of Birefringent PSFs
While four polarization states are simultaneously sampled
by the polarizer-mosaicked photosensor, we note that the
set of intensity measurements captured in our system are
not fully independent. Specifically, given the intensity and
phase of the 0◦ and 90◦ polarized fields that are induced at
the sensor plane by the metasurface, the intensity measured
on the 45◦ and 135◦ channels may defined in terms of the
interference,

h45◦(135◦) =
h0◦

2
+
h90◦

2
∓
√
h0◦h90◦ cos(ψ0◦ − ψ90◦). (7)

Consequently, while the intensity patterns on all four chan-
nels are distinct, the design space is constrained and only
three measurements are linearly independent. Despite this
fact, it is still beneficial to utilize all four measurements as is
discussed in Section 3.4.

Since our proposed method relies on the ability to engi-
neer the collection of PSFs, we raise the following question:
When the intensity distributions h0◦ and h90◦ are fixed,
what is the space of functions that can be realized for
h45◦ by structuring the phases at the sensor plane, ψ0◦

and ψ90◦? For simplicity, let us consider the transmittance
of the metasurface to be a uniform disk with a spatial
constraint set by the aperture. In an exact sense, the answer
is then disappointing. Transport of intensity [49] tells us
that specifying the intensity h0◦ (or h90◦ ) everywhere on
the sensor plane determines the phase ψ0◦ (or ψ90◦ ), and so
the number of possibilities for PSF h45◦ is exactly one.

However, a key concept in this work is that substantially
more flexibility emerges in the solution space when we
are only interested in (and capable of realizing by gradient
descent) intensity distributions at the sensor that approximate
a target distribution over a finite subset of that plane.
Fortunately for us, there are an infinite number of these
approximations, and because each corresponds to a different
phase distribution, we may control the intensity measured
on the interference channels. For our particular task, we
also highlight that our approach relies less on having exact
intensity distributions for each of the component PSFs and
much more on the accuracy of their linear combination.

To visualize this flexibility, we first borrow inspiration
from [50] and compute different instantiations of the phase
at the sensor plane ψ0◦ that emerges when using gradient
descent to optimize the intensity h0◦ to approximate a
target intensity h′. We use different initial conditions and
terminate descent after a fixed number of steps. Specifically,
we solve the following minimization problem to recover the
phase modulation on the optic,

ϕ∗ = argmin
ϕ

[
L
(
|P (teiϕ)|2, h′

)]
, (8)

where P denotes the free-space propagation operator of
Equation (5), transmittance t is set to be unity within an
aperture radius, and we consider different loss functions for
L to emphasize qualitatively different intensity solutions.
Examples of the optimized sensor plane intensity and phase
distributions (produced after propagating the field of t and
ϕ∗) are shown in Figure 4a-b. In panels c-d, we provide
a similar visualization demonstrating how these different
approximations to intensity enable the ability to uniquely
structure the interference. While the pair of intensities h0◦
and h90◦ are again optimized to approximate the target h′, a
different user-defined intensity distribution for h45◦ can be
realized.

3.3 Neural Optical Model

Motivated by the recent success of coordinate-MLPs as
neural implicit representations for a suite of tasks [42], [51],
we employ a pre-trained MLP as a differentiable proxy
function for the mapping between nanofin cells and their
optical response (Equation 4). We consider the network
depicted in Figure 2a, consisting of two hidden layers, ReLU
activation, and between 256 and 1024 neurons per layer.
Min-max normalization is applied to the inputs and phase-
wrapping is handled by predicting the geometric projection
of the phase (often referred to as cyclical feature encoding).



After training on the FDTD data, we find that the model can
accurately reproduce the mapping, with a mean absolute
error in complex field predictions for a withheld test set as
low as 0.019. Qualitatively, we also observe that the model
can correctly identify the cells that experience resonances
which are characterized by dips in the transmission. The
FDTD and MLP outputs are visually compared in Figure
2b-c.

As a benchmark, we compute the number of floating
point operations for an equivalent calculation utilizing the
auto-differentiable field solver in [52]. We find that the
MLP requires approximately a factor of 103 to 104 fewer
floating point operations per evaluation. Additional details
are provided in supplement S3. In the supplement, we
also compare the usage of an MLP to alternative models
including elliptic radial basis function networks and multi-
variate polynomial functions (as was used for nanocylinder
metasurface design in [53]). We find the MLP to be substan-
tially more accurate and to be the only model tested that
reproduces the high-spatial frequency features in the data.

Once trained, the network weights are fixed and the MLP
is used for the main optimization tasks in this work. In
order to constrain the learned nanofin dimensions wx, wy
to be within the min-max bounds of the training dataset,
we use reparameterization [54], [55] and optimize over an
unconstrained latent variable that is transformed to the
bounded nanofin widths.

3.4 Multi-Image Synthesis Optimization
In this section, we discuss our optimization algorithm to de-
sign a metasurface that produces four polarization-encoded
measurements for image processing. Since the formation
of an incoherent image may be modeled by convolution
with the intensity PSF (Equation 2), spatial frequency fil-
tering objectives may be formulated as the realization of
a discretized, target filtering kernel F ∈ RBxNx1 from the
linear combination of non-negative PSFs. Throughout, B
denotes a batch dimension corresponding to the channels
of wavelength and depth, and N denotes the number of
sensor/image pixels used to define the kernel (flattened to
1D).

Considering the polarizer-mosaicked photosensor, our
optical system is characterized by the collection of four PSFs,
defined as H = [h0◦ , h45◦ , h90◦ , h135◦ ] where H ⊂ RBxNx4

≥0 .
The PSFs h0◦ and h90◦ are computed utilizing Equations
(4)-(6) for a given metasurface, while h45◦ and h135◦ are
defined according to the interference via Equation (7). A
set of digital weights are defined as α ∈ R4x1 such that
the (noiseless) synthesized net PSF approximating the target
filter is given by the tensor product Hα. Throughout this
paper, we use the notation XY to represent batched matrix
multiplication between tensors X and Y 3. The primary task
is then to identify suitable decompositions for α and the
physics-constrained tensor H (produced by a metasurface
Π) given one or more target filtering kernels.

While there are infinitely many solutions to this fac-
torization problem, we highlight that not all will perform

3. More generally, matrix operations applied to a tensor corresponds
to the operation on the matrix in the inner-two dimensions. For exam-
ple, if H has the shape [BxNx4], then HT takes the shape [Bx4xN ].

Fig. 5. Depiction of the minimum-bias problem in multi-image-synthesis.
On the first row, example decompositions with two component PSFs (red
and blue) are shown for a Laplacian of Gaussian target. On the second
row, the dashed black line corresponds to the target filter and the solid
black corresponds to the synthesized net PSF. The computed mean
signal-to-bias ratio (Equation 9) from left to right are 0.38, 0.76, and 1.0.
The decomposition in (c) corresponds to the minimum-bias solution.

equally well in the presence of noise. Specifically, we con-
sider a measurement model Γ : R → R mapping photons
at the photosensor plane to detected electrical signal, where
the noise scales with the signal intensity (see supplement
S5 for details). The digitally-synthesized net PSF Γ(H)α
may then be unusable if the net signal at a pixel is much
weaker than the noisy component signals. This challenge
of identifying optimal decompositions has historically been
referred to as the minimum-bias problem [26], [56]. We
note that the consideration of measurement noise is also
the reason that it is beneficial to optimize over all four
polarization channels although one is not linearly inde-
pendent. Specifically, it is the comparison between directly
measuring Γ(h135◦) as opposed to its digitally synthesized
counterpart, a1Γ(h0◦)+a2Γ(h45◦)+a3Γ(h90◦) where ai are
scalar constants (see Figure 7 for a practical example).

A qualitative example of different decompositions of
varying quality are shown in Figure 5. Optimal solutions to
the unconstrained problem may be characterized by orthog-
onality for the component signals that are to be digitally
subtracted. To quantify the quality of a particular solution,
the authors in [26] propose as a metric the mean signal-to-
bias ratio which may be given in a generalized form via,

mSBR = ∥|Hα| ⊘H|α|∥ /N, (9)

where |·| denotes an element-wise absolute value and ⊘
denotes Hadamard division. Throughout we apply vector-

like norms for matrices ∥X∥p =
(∑

ij |Xij |p
)1/p

, where
p = 1 if unstated.

To identify a set of digital weights α and a metasurface Π
that together can realize target filtering operations, we then
propose an optimization scheme utilizing gradient descent
and a regularizer motivated by Equation (9). We formulate
the objective as

argmin
α,Π

∑

i

[∥∥∥∥∥
F (i)

∥∥F (i)
∥∥
2

− Hα(i)

∥∥Hα(i)
∥∥
2

∥∥∥∥∥+R
]
, (10)

where the superscript (i) enumerates over different sets of
weights and targets. We use a two-term regularizer R given



Fig. 6. Visualization of the learned PSF decomposition for a metasurface
optimized with and without regularization (monochromatic incident light
and a single depth). The target filter is a second-derivative Gaussian
kernel and a noisy measurement model Γ(H) is applied to the PSFs.
Overlaid text denotes the PSNR which here compares the similarity be-
tween the synthesized net PSF with noise and the target filter. Blue and
red pixel colors correspond to negative and positive signal, respectively.
The per-channel PSFs shown are displayed after the digital scaling,
αcΓ(hc). When applying the bias regularization term, the gradient de-
scent solution may learn to use fewer than all four images if beneficial
via setting αc terms close to zero.

via,
R = −c1 Tr (R)︸ ︷︷ ︸

energy

+c2 ∥M ◦R∥︸ ︷︷ ︸
bias

, (11)

where R = HTH , M = max
(
−ααT , 0

)
, c1, c2 are hyper-

parameters, and ◦ denotes the Hadamard product.
Objective (10) aims to synthesize net PSFs that approxi-

mate the set of target filters only up to scale. The (batched)
matrix R contains the terms Ri,j = ⟨hi, hj⟩ such that the
elements on the diagonal are monotonically related to the
energy in each polarization channel. The first regularizer
term scaled by the coefficient c1 then encourages the learned
metasurface to have high focusing efficiency and the PSFs
it induces to be spatially compact, i.e., contained within
the finite simulation region. The second term controlled by
the coefficient c2 corresponds to a masked orthogonality
constraint that minimizes the pair-wise overlap of PSFs
with digital weights of opposite sign. In supplement S4,
we show that this masked bias-regularizer emerges as a
generalization of Equation (9) when considering distance
metrics of the form D (|Hα|, H|α|).

In Figure 6, we display an ablation study for the regu-
larization terms (see supplemental Figure 8 for visualization
with rendered images). Interestingly, for several target filter-
ing kernels and initial conditions, we empirically observed
that the unregularized gradient descent (c1 = 0, c2 = 0)
naturally produced low-bias solutions but with a significant
amount of energy deflected outside of the simulation region.
Both the energy and bias regularization terms together were
then required to achieve bias and energy efficient solutions.
We note that while it is feasible to consider the application
of noise via Γ(·) as a regularizer, we found that doing so
produced unstable optimizations for noise levels that are
large enough to have a substantial effect.

Lastly, we discuss an end-to-end variant of the objective
in Equation (10), used in this work to realize synthesized
filters that operate under broadband illumination. We again
define a target filtering kernel F but we now compute

the loss with respect to rendered images for planar scene
radiances I ∈ RBxMx1

≥0 via,

argmin
α,Π

∑

i

[∥∥∥∥∥
F (i) ∗ I∥∥F (i)

∥∥
2

− (H ∗ I)α(i)

∥∥Hα(i)
∥∥
2

∥∥∥∥∥+R
]
, (12)

where the spatial dimension of the tensors are unflattened
prior to the 2D spatial convolution denoted by ∗. We note
that it is not important here that the rendering treatment
be accurate for complicated scenes. Rather, we leverage a
loss based on convolved images in order to learn PSFs that
yield an image transformation with similar statistics to the
target operation. For example, while it is not possible to
synthesize a compact net PSF that matches a fixed-width
Laplacian of Gaussian kernel for all wavelength channels,
we can instead discover a similar but physically realizable
net PSF that approximates broadband edge-detection (see
Section 4.3 for more discussion).

4 RESULTS

In the following sections, we optimize 2 mm diameter
metasurfaces4 according to objective Equations (10) and
(12) and design multi-image synthesis systems for different
tasks. Throughout we utilize an Adam optimizer with an
exponentially decaying learning rate. All calculations are
implemented in Tensorflow and we obtain gradients by
automatic differentiation. When computing the PSFs, we
evaluate the intensity and phase at the photosensor plane
with sub-pixel resolution and use strided-convolutions to
down-sample the field to match the simulated sensor’s pixel
pitch.

In principle, the regularizer coefficients c1, c2 are hyper-
parameters that should be chosen by a parameter sweep
conducted for each task. In practice, however, we find
that starting with reasonable initial conditions reduces the
sensitivity to the exact values chosen. As an example, in
Section 4.1 where the target filter is a Gaussian derivative
kernel, we initialize the metasurface to focus h0◦ and h90◦
to two off-axis points; in Section 4.3 where the target is
edge-detection, we initialize to focus on-axis with different
focal spot widths. In doing so, we find that we may set the
bias regularizer coefficient c2 to a single value that is fixed
for all optimizations. We then conduct a coarse parameter
sweep for the energy regularizer coefficient c1 for each task,
increasing the value and re-running the optimization until
the total energy in the simulation region for optimized PSFs
converged.

When rendering images, the photosensor and its noise
properties are modeled according to the EMVA standard
[57] (see supplement S5 for details and the sensor parame-
ters used). We specify the peak signal-to-noise ratio (PSNR)
characterizing the simulated sensor noise, which is then
used to scale the maximum brightness of the scene (number
of photons) according to supplemental Eq. (3). While the
PSFs are optimized over a smaller simulation region, the
PSFs induced by the post-trained metasurfaces are com-
puted across a larger area when used for rendering in order

4. While larger metasurfaces may be designed and fabricated, we
choose 2 mm optimizations as they can be done on a standard desktop
GPU enabling easier accessibility.



Fig. 7. Multi-image synthesis for digitally steerable Gaussian first-derivatives. (a) The optimized metasurface phase and transmission imparted
to incident light of two linear polarization states is shown (designed for infinity-focus). Below are the simulated PSFs for the four measurable
polarization channels. Total focusing efficiency of the metasurface is approximately 71%. (b) Top row displays the synthesized net PSFs where
α(1),(2) are learned and α(3),(4) are defined by Equation (13). Below are the synthesized, net images computed by first rendering the images for
each polarization channel (where I0◦ is displayed). The four images are then combined by per-pixel addition with weights α(i).

to capture the effects of scattered light. For demosaicing,
we find it sufficient in most cases to use simple nearest-
neighbor interpolation; we observe that the improvements
from bi-linear interpolation or more advanced treatments
are generally imperceptible since our target filters are rela-
tively large and smoothly varying.

We present experimental validation for the inverse-
designed metasurfaces and the PSF decompositions in Sec-
tion 4.4 (see also FDTD simulations in supplement S2).

4.1 Multi-filter Design: Steerable Derivatives

We first demonstrate that it is possible to realize multiple
opto-electronic filtering operations using a single fixed optic
and the capture from a single exposure. Specifically, one
may obtain different filtered images of a scene by chang-
ing only the digital synthesis weights α. To do this, we
exploit the class of steerable filters whose space of orientated
kernels lie in the span of a small number of basis kernels,
as discussed by the authors in [58]. In particular, we focus
attention to the steerable Gaussian first derivative, parame-
terized by two basis kernels. Demonstrating examples that
utilize a larger number of basis functions may be a topic
of future investigation. The optical implementation is made
possible by the fact that our architecture grants us access to
four imaging channels, while we require at minimum only
two channels per basis kernel in order to encode the positive
and negative components of the signal.

In particular, for a co-designed set of PSFs H induced by
the metasurface, we desire a set of synthesis weights α(1)

that yields a net PSF corresponding to the Gaussian first
derivative along the x-axis and another set of weights α(2)

corresponding to the first derivative along the y-axis. From
this pair, the synthesis weights corresponding to the deriva-

tive along any other direction, specified by the rotation angle
θ, can be defined via,

α(θ) = α(1) cos(θ) + α(2) sin(θ). (13)

By optimizing for the two basis filters as targets using
Equation (10), we thus obtain an infinite (but compact) set
of filters that can be digitally isolated.

For simplicity, we design this metasurface to operate
for monochromatic light of λ = 532 nm and infinity-
focus. The optical response of the optimized metasurface
and its simulated performance in imaging a target scene
is displayed in Figure 7. Notably, the optimization learns
a minimum-bias decomposition to approximate the two
target filters and the resulting metasurface can then produce
differentiated images at any orientation angle. We also show
that the synthesized filtered images are of suitable quality
even when the component images are captured with low
SNR.

4.2 Depth-dependent Differentiation

We demonstrate that the filter-based optimization objective
(Equation 10) can also be used to learn image transforma-
tions that are dependent on properties of the incident field.
Specifically, we frame the target filter as a Gaussian first-
derivative but with an orientation angle that varies with
respect to the depth of an on-axis point-source. We then
optimize for a metasurface Π and a single set of digital
weights α. The synthesized image formed from this optical
system would correspond to a differentiated image of the
scene but with a spatially varying filter dependent on the
depth of each object.

We consider monochromatic light of λ = 532 nm and
define the derivative orientation to vary linearly across a
depth range of 1 cm. Since a minimum of only two captured



Fig. 8. Multi-Image synthesis applied to the task of depth-dependent
directional differentiation. The metasurface here is optimized for two-
channel operation using h0◦ and h90◦ (a) The simulated PSFs and the
synthesized net PSF are shown for point-sources at different depths.
Total light efficiency is approximately 60%. (b) The rendered compo-
nent images and synthesized net image for a scene consisting of four
uniform-intensity fronto-planar disks with relative depths indicated by the
map (between 33 and 41 mm from the metasurface).

images are theoretically needed for this case, we conduct the
optimization utilizing two polarization channels (trained by
zero-masking the weight values α2,4 = 0). These results are
shown in Figure 8a. We note that when the general four
image case is considered with a non-zero bias regularizer,
the optimized solution also converges to utilization of just
two images. In either case, we find that the trained metasur-
face accurately learns to approximate the rotating kernel by
encoding each lobe on orthogonal polarization channels.

We also show in simulation the potential use of this
optic for a simple test scene consisting of fronto-planar
disks of uniform intensity at different depths, as displayed
in Figure 8b. Inspired loosely by the principle of depth
from differentiated images in an event-camera architecture
[59], we hypothesize that these depth-dependent derivatives
may enable a unique approach to passive depth sensing by
serving as a sparse depth cue that is coaligned with the
undifferentiated, component images. Applying an equiva-
lent spatially-varying kernel would be difficult to reproduce
using a standard lens and digital post-processing. In the
multi-image synthesis method, however, it emerges with a
computational cost of as few as three floating point opera-
tions per pixel.

4.3 Broadband Filter Design: Edge-detection
Here we discuss the potential to leverage dispersion engi-
neering in metasurfaces to the task of multi-image synthesis.
We review that the PSFs produced by a metasurface vary
with wavelength because both the optical response of cells
(see Figure 2b) and field propagation from the optic to the

Fig. 9. Broadband edge-detection (a) The PSFs for the four polariza-
tion channels at different wavelengths across the optimization range.
The h90◦ intensities have a larger spatial extent and are shown on
a larger grid in the overlaid insets. (b) The synthesized net PSFs for
each wavelength band are displayed above (c) the corresponding per-
wavelength band rendered image produced by convolution of the scene
radiance and the net PSF (d) We utilize the post-trained metasurface
and weights α to render images for different test scenes pulled from a
hyperspectral dataset. While we consider a monochromatic photosensor
for the synthesized images, on the left panel we project the broadband
image at the photosensor for each polarization channel to RGB-color for
visualization purposes.

photosensor (see Equation 5) are wavelength dependent.
While we cannot control the latter, the freedom to select the
cells that are placed at each location across the metasurface
enables the ability to structure the PSFs with respect to
wavelength. Importantly, the control and precision depends
on the functional space of t(λ) and ϕ(λ). Here, we continue
utilizing nanofin cells; however, we highlight that a sub-
stantially larger design space can be realized by considering
cells with more complicated nanostructures. An example is
the three nanofin design introduced in [60], which contains
seven shape parameters per cell instead of two. Exploration
of the filters that can be realized in such case is left to future
investigations.

To demonstrate broadband capabilities, we utilize the
image-based objective Equation (12) and design an infinity-
focused (radially symmetric) metasurface and a single set
of synthesis weights. We optimize over a spectral range
between 500 and 600 nm, with a 10 nm step size. The target
filter is defined to be a narrow Laplacian of Gaussian kernel
and we utilize the “camera man” image as the scene irradi-
ance I , both of which are kept the same for all wavelength
channels. A key insight behind this approach is that we do
not expect to discover a metasurface that realizes the user-
defined filter exactly; in fact, it is ensured that we cannot
produce the wavelength invariant kernel specified here. By
providing the filtered images as targets, however, we are
able to find a decomposition that approximates the target



Fig. 10. (a) Optical microscope image of the metasurface designed for
steerable filtering. The inset shows a photograph of the mounted 2 mm
device. (b) A scanning electron microscope image of a small region on
the metasurface. The fabricated structures approximate the designed
nanofins although machine limitations cause the rounding of edges.
Experimental vs simulated PSFs and synthesized net PSFs are shown
for (c) the steerable Gaussian first derivative kernel and (d) the Laplacian
of Gaussian kernel, measured for incident light of λ = 532 nm.

statistics, which in this case are those characterizing edge-
detection. We observe substantially better convergence by
utilizing this approach rather than objective Equation (10).

4.4 Experimental Validation
The results of this optimization are shown in Figure 9a-c.
The four polarization channels are utilized and the learned
synthesis produces a net PSF for each wavelength band with
properties similar to the Laplacian of Gaussian kernel. The
filtering operation in the post-trained system generalizes to
other scenes, and in panel-9d (see also supplemental Figure
9), we display rendered synthesized images for test scenes
utilizing the hyperspectral data released in [61]. The spectral
data is clipped to the optimization range, equivalent to
assuming a wide pass-band spectral-filter at the entrance of
the camera. The accuracy in which the synthesized images
approximate the target spatial filtering operation may be
improved by utilizing a collection of scenes during training
rather than just one out-of-distribution scene.

Lastly, we provide experimental validation for the de-
sign methods utilized in this work by fabricating and testing
metasurfaces similar to those presented in Sections 4.1 and
4.3. We utilize electron-beam lithography and atomic layer
deposition as discussed in [62] to create the metasurface

Fig. 11. Images captured with the steerable-derivative metasurface cam-
era. (a) Unprocessed measurements captured on the four polarization
channels for a particular scene. (b) The net images formed from the
pixel-wise linear combination of the four component images synthesizes
differentiation that is digitally steered to three angles (−30◦, 0◦, 30◦) by
only changing the summation weights α. (c) Target filtering results at
the same steering angles, computed by digital convolution of the target
filters (Gaussian derivatives at orientation angles 0◦ ± 30◦) and the in-
focus raw image. (d) Measurements I0◦ and the synthesized net image
corresponding to differentiation along the x-axis for other scenes.

composed of 600 nm tall TiO2 nanofins. Nanofabrication
details are contained in supplement S6. Optical and scan-
ning electron micrographs of one metasurface is displayed
in Figure 10a-b, respectively. We then build an experimental
camera utilizing an off-the-shelf polarizer-mosaicked pho-
tosensor (as shown in supplemental Figure 7) and simulta-
neously measure the four PSFs. The measurements are dis-
played in Figure 10c-d for monochromatic light of λ = 532
nm, and we find good agreement between the experimental
and simulated PSFs.

Utilizing the camera mounted with the steerable-
derivative metasurface operating as a lens, we then capture
images of various scenes, some of which are shown in
Figure 11. Although the metasurface is designed to focus
at infinity, we find good performance for objects placed
as close as 1 meter in front of the camera. By digitally
computing only the weighted, pixel-wise summation of the
four captured images, we confirm the ability to synthesize
a collection of new, differentiated images of the scene with
good agreement to the equivalent operations utilizing more
expensive digital convolutions (shown in panels a-c).

5 CONCLUSION

In this work, we have discussed the application of meta-
surfaces to the task of snapshot opto-electronic image pro-
cessing. While the original theory introduced the principle
of subtracting two normalized images, we present a gener-
alization and a new design scheme for the learned linear
synthesis of many images. Our experimental setup remains



compact involving at minimum a single birefringent meta-
surface operating as a lens and a commercially available
polarizer-mosaiced photosensor. By leveraging the unique
properties of metasurfaces, we are able to demonstrate
light-efficient polarization-encoded PSFs to realize multiple
filters, along with depth-dependent and broadband oper-
ation. We also present a general discussion on the use of
polarization for multi-coded imaging which may find use
in other tasks beyond image processing. While orthogonal
polarization states, e.g. h0◦ and h90◦ , have been used before
for other imaging tasks, we show that the intensity distribu-
tions formed from their interference may be engineered and
utilized as additional imaging channels.

Lastly, we highlight that metasurfaces have been used to
produce multiple images by means other than polarization
multiplexing. Guo et al. [31] used a metasurface to produce
two distinct images of a scene at spatially offset locations
on the photosensor. By combining that method with the
polarization technique discussed in this work, it is possible
to capture eight images of a scene in a single exposure. One
may then optimize the image synthesis of all eight captures,
producing a very large collection of different filters that can
be isolated and applied with minimum computational cost.
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Fig. 1. Visualization of the cell FDTD calculation from a (a) 3D view
and (b) 2D side-view. Field calculations are conducted on a grid of
points within the FDTD region. PML refers to “perfectly matched layers”
and PBC denotes periodic boundary conditions. We utilize the index of
refraction for SiO2 as the substrate and TiO2 for the nanofin.

S1. GENERATION OF THE CELL DATASET

The nanofin cell dataset utilized in this work was generated
by finite-difference time-domain (FDTD) field calculations
with the commercial software, Ansys Lumerical. We high-
light for the interested reader that there are several other
free code packages that could alternatively be used. Specifi-
cally, a different method to solve Maxwell’s equations while
assuming periodic boundary conditions that has gained
significant attention recently in the metasurface community
is the rigorous coupled wave analysis method (RCWA). Free
and heavily validated RCWA code packages include [1], [2],
[3].

A visualization of the FDTD calculations for a single cell
instantiation is displayed in Fig. (1). The FDTD simulation
region corresponds to a 3D (non-uniform) spatial grid of
points, over which the electromagnetic fields are computed
(displayed as the orange box in panels a-b). An ideal plane-
wave source consisting of two linear polarization states,
Ex and Ey , is injected from within the substrate. Notably,
periodic boundary conditions for the simulation region are
used transverse to the incident light while perfectly matched
layers are used at the top and bottom boundaries. The cell
width, as noted in the main paper, corresponds here to the
width of the FDTD simulation region.

While the fields are calculated throughout the simulation
region, we collect the Fourier-transformed complex fields at
the “monitor” (denoted by the yellow square in panels a-
b). It is positioned a few hundred nanometers above the
nanofin to avoid near-field effects. The 2D fields recorded

Fig. 2. Visualization of the nanofin optical response datasets for different
cell widths (rows) and viewed for different wavelength slices (columns).
The display is similar to Figure 1(b) of the main paper. Each point
corresponds to a particular instantiation of the nanofin widthswx andwy

but the point color (and transparency) map to the transmission percent.
Complete coverage in the scatterplot would indicate that the library of
cells can enable a decoupling of the ϕx and ϕy response.

at the monitor are then propagated to an axial point in the
far field (a few micrometers above). We define the field at
this centered, distant point to be the optical response of the
cell. The amplitude transmittance and phase is normalized
relative to the calculation with no nanostructure present.

In the main paper, we utilized a cell size of 350 nm;
however, we also investigated the optical response dataset
for other cell dimensions ranging from 200 nm to 400 nm.
The results of this test when conducting a coarse sweep
over nanofin widths are visualized in Figure 2. While the
different datasets are qualitatively similar, we empirically
observe that changing the cell size has an effect similar
to scaling the amount of phase-delay imparted by a given
nanofin. We chose the 350 nm cell width as it presented
sufficient decoupling of the two phases ϕx and ϕy in the
mid-visible near λ = 530 nm. A cell size of 400 nm could
also be effective, however, we prefer selection of the smallest



usable cell dimension to avoid the potential for non-zero
diffraction orders.

S2. VALIDATION OF THE CELL DESIGN THEORY

In Section 3.1 of the main paper, we reviewed the cell
design principle for metasurfaces. We consider the cells as
independent building blocks and pre-compute their optical
responses. By utilizing periodic boundary conditions in the
calculations, we obtain an approximation to the true local
optical response that is independent to the selection of
nanostructures at other locations on the composite metasur-
face. Here, we demonstrate that this approximation is rea-
sonable. We show that the PSFs computed for a metasurface
using the cell model is almost equivalent to that obtained
in the most general case where the field across the entire
metasurface is solved for without partitioning.

We note, however, that it is generally computationally
intractable to compute the fields across millimeter scale
devices using a nanometer scale grid discretization. For this
reason, we are only able to simulate the fields across 50 µm
diameter metasurfaces, using the same FDTD software as is
discussed in supplement Section S1. Because we reduce the
diameter of the metasurfaces relative to those considered
in the main paper, we also reduce the lens-to-photosensor
distances such that the designed f-number of each optic
remains the same. This enables a better generalization of
the findings.

For the FDTD calculations, we utilized 64 CPU cores and
each full lens simulation took approximately 8 hours on a
compute cluster. When calculating the fields across the full
metasurface, we utilize perfectly matched layers for all the
simulation boundaries (in contrast to the periodic boundary
conditions that are used for the cell simulations). As a
note, recent research on hardware and software acceleration
has been leading to the development of specialized field
solvers better suited to this task, a notable example is the
recently released commercial software Tidy3D. In the future,
simulations across millimeter or larger devices may become
accessible.

We first review the analysis conducted for the task of
steerable filters (similar to Figure 7 in the main paper).
Utilizing the same optimization algorithm and target filter,
we designed a 50 µm metasurface for infinity focus and
monochromatic incident light of λ = 532 nm. The optimized
arrangement of nanofins can be seen in supplemental Figure
3a. In panel (b), we show the computed, modulated fields
that are transmitted through the full metasurface in re-
sponse to a normally-incident, linear polarized plane-wave,
whose polarization angle is orientated at 45◦ with respect
to the x-axis. The FDTD calculations are computed for the
full metasurface without partitioning while the cell-based
treatment stitches together the predicted, spatial modulation
pattern based on the pre-computed dataset of cell optical
responses. Notably, we observe excellent agreement in the
phase predictions for the metasurface when assuming the
cell-based treatment vs the more general but expensive
full model. Qualitatively, the transmittance also has strong
agreement although we observe more variations.

We now compare the predicted PSFs for both cases. The
PSF calculations for the cell-based approach is done in the

Fig. 3. A comparison of full-field FDTD calculations to the cell-based
calculations presented in the main paper for a reduced size metasurface
that implements the steerable Gaussian derivatives. (a) The optimized
50 µm diameter metasurface loaded into the FDTD software. Details
of the calculation are shown in the right-most panel. (b) The phase
and transmittance just after the metasurface, in response to a normally
incident plane wave of wavelength λ = 532 nm. We refer to the
mapping from the nanofin cell to the predicted optical response when
utilizing the pre-trained MLP as the ”neural cell” prediction. FDTD full
refers to the direct calculation of the field when simulating the entire
device. (c) Predicted intensity PSFs from the cell-based treatment and
Fresnel propagation vs directly from FDTD. The relative absolute error is
computed and shown only for pixels with an intensity of at least 5% the
peak intensity. (d) The phase distribution at the output plane computed
by both methods.

same manner as in the main paper. We first utilize the pre-
trained MLP to map the metasurface cells to their local
optical response. We then propagate the field defined by
the collection of per-cell responses to the photosensor plane
using the Fresnel integral. We do this calculation directly for



Fig. 4. Similar to supplemental Figure 3, we compare the cell-based approach (and the Fresnel propagated PSFs) to the equivalent calculation
utilizing FDTD for the 50 µm metasurface shown in supplemental Figure 5.

h0◦ and h90◦ and then obtain h45◦ and h135◦ by computing
the interference. This set of PSFs are shown in supplemental
Figure 3c-d.

For the full FDTD case, we first directly solve for the
field after the metasurface. We then use the FDTD soft-
ware itself to propagate this field to the output plane; in
doing so, a rigorous treatment of propagation is used which
differs from the Fresnel integral and does not assume the
paraxial approximation. This comparison thus also provides
validation for our differential propagator and treatment of
interference. The FDTD predicted PSFs are also displayed in
panel c-d, and we find excellent agreement between the cell
based calculations and the more rigorous FDTD treatment.

Fig. 5. Visualization of the optimized metasurface to be used in a broad-
band setting. This metasurface corresponds to the analyzed profiles in
supplemental Figure 4.

We now explore the full-field analysis applied to a broad-
band case, shown in supplemental Figure 4. The technical
details of the cell model and FDTD calculations mirror the
above discussion, so we focus here on the results. Similar
to Section 4.3 of the main paper, we consider the design of
a metasurface that is used to approximate the Laplacian of
Gaussian kernel for a wide range of incident wavelengths.
For this design task, however, we find that it is suitable to

apply the filter-based objective given by Equation (10) in
the main paper. We define the target filter kernel to have
a width that increases with wavelength which matches the
natural broadening of the PSF. The optimized nanofin meta-
surface is shown in Figure 5. Again, we compare the FDTD
calculation (left panel of supplemental Figure 4) to the cell-
based approach (right panel) and find strong agreement
for the predicted transmittance, phase, and PSFs across the
wavelength range.

S3. NEURAL OPTICAL MODEL EVALUATION

For gradient-based optimization of the metasurface, we
require an efficient and differentiable approximation for
the mapping between the nanostructure shape parameters
and the optical response of the cell. As an alternative to
the MLP, we also considered for this work elliptic radial
basis function networks (ERBFs) and simple multivariate
polynomial functions as applied in [4]. For all cases, we
consider the input-output mapping depicted in Figure 2a of
the main paper. To the best of our knowledge, ERBFs have
not previously been explored in the context of this problem.
First we review the performance of these alternative rep-
resentations and after, we discuss auto-differentiable field
solvers as a benchmark.

ERBF networks are reviewed in [5], [6] and may be
considered as a particular class of neural networks consist-
ing of a single hidden layer. Each neuron in the hidden
layer parameterizes a radial basis function, which in this
case corresponds to a three-dimensional elliptic Gaussian
potential (assuming the set of three inputs wx, wy , and λ).
The neurons then compute the Euclidean distance of the
inputs and its weights followed by the activation, in contrast
to neurons in a typical MLP which utilize the dot-product
between inputs and weights. The number of neurons in the



Fig. 6. A comparison of the MLP to other implicit representations. (a)
We train several models of different sizes and evaluate the performance
of each on a test-set of nanofin cells. In each case, we compute the
predicted complex optical response for two basis polarization states and
evaluate the mean absolute error relative to the true optical response.
FLOPs refers to the number of floating point operations required per
model evaluation. (b-c) This figure is analogous to Figure 2b-c of the
main paper. We display the model predictions for slices through the
dataset at (b) a fixed wavelength of λ = 532 nm and (c) at a fixed nanofin
width wy = 180 nm. The points are queried at 5x the resolution of the
training data.

hidden layer and thus the number of basis functions used
to represent the data is a degree of freedom. The neuron’s
standard deviations and center coordinates, in addition to
the weights and bias of a linear output projection layer, are
all trainable parameters that may be updated by stochastic
gradient descent.

We tested axis-aligned ERBFs with a number of neurons
between 512 and 5000 to represent the nanofin cell dataset.
Increasing the number of neurons beyond this point became
impractical from a training time perspective. While we
also explored the more general case of learnable covariance
matrices rather than axis-aligned standard deviations, these

networks required a similar number of floating point oper-
ations (FLOPs) as the MLP but took orders of magnitude
longer to train.

Alternatively, the multivariate polynomial formulation
is relatively standard and the mapping is cast into a lin-
ear, matrix form. The coefficient matrix is updated by the
method of least squares and we consider a separate matrix
for each of the six output parameters. We tested polynomial
orders up to 24, above which became impractical due to
memory limitations. We also chose not to explore higher
polynomial orders utilizing a stochastic gradient descent
training scheme.

The test performance and computational complexity de-
fined by the number of floating point operations is dis-
played in Figure 6 for the different models. For the MLP
and the ERBF networks, the same set of test cells in the
dataset were withheld during training. We find that the
MLP substantially outperforms the other two representa-
tions in terms of achievable accuracy. While the largest MLP
(1024 neurons in each hidden layer) required an order of
magnitude more FLOPs per inference than the other largest
models tested, this difference proved unimportant as the
MLP is still efficient enough to be used in the optimization
of a 2 mm metasurfaces with a single desktop GPU (RTX
3090). Moreover, the smallest MLP (e.g. 256 neurons) also
outperforms the other representations. The model predic-
tions when reproducing slices of the dataset are visualized
in panels b-c.

Lastly, we compare the computational complexity of
these approximate models to the direct field calculations
evaluated utilizing an auto-differentiable field solver. Here,
we consider the Tensorflow implementation of rigorous cou-
pled wave analysis (RCWA) released in [2]. RCWA solves
Maxwell’s equations in the Fourier domain and formulates
the problem as an eigenequation. For small cell sizes and
periodic boundary conditions, RCWA is generally more
computationally efficient than FDTD. The accuracy of the
calculations depends on the grid discretization used when
defining the simulation and on the number of Fourier modes
applied to the solution; typically 81 or more Fourier modes
are required to obtain converged results.

For this study, we consider a discretization of the nanofin
cell into a 512x512 grid. We then consider 49, 81, and
121 Fourier modes. Using the Tensorflow profiler, we then
estimate the number of floating point operations required
per RCWA cell evaluation (and per wavelength) to be ap-
proximately, 363M, 1.62B, and 5.38B. Although memory
bottlenecks are generally the limiting factor for applying
auto-differentiable field solvers to inverse design problems,
we summarize that RCWA would be several orders of
magnitude more expensive as compared to the MLP from
the perspective of number of FLOPs.

S4. MINIMUM-BIAS REGULARIZATION

We now discuss the motivation for the particular form of
the bias regularization term introduced in Equation (11)
of the main paper. The inspiration comes from analysis of
the per-pixel “signal-to-bias” ratio metric introduced by the
authors in [7], which we have rewritten in a generalized
form in Equation (9) of the main paper. Since computing



the per-pixel ratio may be numerically unstable, we instead
consider differential distances D(·) between the two vec-
tors/matrices:

D(|Hα|, H|α|) ≡ D

(∣∣∣∣∣
∑

c

αchc

∣∣∣∣∣ ,
∑

c

|αc|hc
)
, (1)

where we are utilizing the notation |X| =
√
X ◦X to

denote a per-element absolute value utilizing the Hadamard
product ◦, c enumerates the four polarization channels
c ∈ {0◦, 45◦, 90◦, 135◦}, αc denote a scalar constant used
in the digital synthesis, and hc is a PSF from the set.

We find that it is insightful to first consider the difference
d of the squared vectors1 which may be expanded via:
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From the last line, we then observe that the L1-norm of this
difference vector d, ∥d∥1, corresponds to the regularization
that is used in the main paper. Specifically, summing over
elements of d yields the overlap integral for PSFs that are
combined with digital weights of opposite sign.

We now show that this masked regularization occurs
up to a normalization term when considering the non-
squared vector difference for d. In other words, variations
of the masked orthogonality emerge when D in Equation
(1) corresponds to standard vector norms:

d =

∣∣∣∣∣
∑

c

αchc

∣∣∣∣∣−
∑

c

|αc|hc

=
(
∑
c αchc)

2 − (
∑
c|αc|hc)

2

|∑c αchc|+
∑
c|αc|hc

=

∑∑
sign(i)̸=sign(j) −2|αi||αj |hi ◦ hj
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In the last line, the denominator is a purely positive vector.
If we compute ∥d∥1 in this case, we again obtain the overlap
integral for pairs of PSFs but with a per-pixel weighting
dependent on the intensity distributions.

S5. THE MEASUREMENT OPERATOR AND SIMU-
LATED NOISE

As introduced in Section 3.4 of the main text, we define a
noisy measurement operator Γ(·) which maps the photons
at the photosensor plane to detected electrical signal. This
measurement model is defined according to the EMVA
standard [8] via,

Γ(X) = Round [(P(qX) +N (µd, σd)) k] , (2)

1. While this type of vector difference is not used in standard distance
metrics, it is helpful to consider as a start given the abnormal usage of
the absolute value

Fig. 7. Experimental setup used to measure the polarization encoded
PSFs, discussed in Section 4.4 of the main paper. The polarization
camera used is the FLIR Blackfly BFS-PGE-51S5; the global coordinate
frame is defined relative to the photosensor, such that the x- and y-
axis directions aligns with the 0◦ and 90◦ nanowire polarizers on the
detection pixels. The linear polarizer at the entrance of the optical
system is orientated at 45◦.

where P denotes the Poisson and N the normal distribution,
q and k are the detector quantum efficiency and gain, and
µd and σd parameterize the dark noise. For the simulations
in this work, we model the noise properties of the BFS-
PGE-51S5 photosensor, which is the polarizer-mosaicked
photosensor used in the experiment (and shown in sup-
plemental Figure 7). EMVA technical specifications for this
photosensor are available from the manufacturer (although
reported only for 525 nm incident light); we utilize the
values q = 0.24, µd = 2.45 e− and inverse gain k−1 = 0.18
for all wavelengths and polarizations.

When rendering scenes via Equation (2) of the main
paper, we desire a rescaling of the scene irradiance Ic(u, v)
such that the per-channel intensity produced at the photo-
sensor by an ideal lens corresponds to a noisy measurement
with a specified peak signal-to-noise ratio (PSNR). We iden-
tify this scaling factor using the following relation [8]:

Nphotons(PSNR) =
PSNR2

2q


1 +

√
1 +

4(σ2
d + σq/k2)

PSNR2


 .

(3)
Here, Nphotons refers to the peak number of photons which
sets the maximum value of Ic. The variable σq corresponds
to quantization noise which in this case is defined by a 12
bit ADC conversion. By utilizing supplemental equations
(2)-(3), we are able to predict the effectiveness of designed
multi-image synthesis systems which are generally well-
known to be sensitive to measurement noise.

S6: METASURFACE NANOFABRICATION

The metasurface design is written into 600 nm thick
ZEP520A positive electron beam resist (Zeon Specialty Ma-
terials Inc.) using electron beam lithography (Elionix HS-
50 50 kV). The resist voids are back-filled with amorphous
titanium dioxide using atomic layer deposition (Cambridge
NanoTech Savannah) and the excess titanium dioxide is
etched back using inductively-coupled plasma reactive ion
etching (Oxford PlasmaPro 100 Cobra). The electron beam
resist is removed by overnight immersion in Remover PG
(Kayaku Advanced Materials). An opaque gold mask (2



Fig. 8. Similar to the ablation study presented in Figure 6 of the main
text. Here, we compare the image synthesis performance of optimized
metasurfaces when designed with and without the regularization terms.
For visual simplicity, we target a symmetric Laplacian of Gaussian ker-
nel. Images are rendered using PSFs computed over a larger simulation
area than that used during optimization (see Section 4 introduction for
more details). Regularization has a substantial effect and the energy
term enforces a spatially compact PSF. When paired with the bias term,
the quality of synthesized images are improved. The importance of
minimum-bias solutions can diminish with increasing SNR.

Fig. 9. Additional examples of the broadband, rendered and synthesized
images produced by the optimized nanofin metasurface, equivalent to
Figure 9d in the main paper but for different test scenes. See the caption
and text for more details.

mm diameter) is deposited around the metasurface by pos-
itive tone photolithography in S1813 photoresist (Kayaku
Advanced Material) with direct laser writing (Heidelberg
MLA150), followed by electron beam evaporation of 5 nm of
chromium and 200 nm of gold (Denton E-beam Evaporator).
Residual photoresist is removed by overnight immersion in
Remover PG (Kayaku Advanced Materials).
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