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Abstract

We consider the problem of reconstructing a H×W ×31
hyperspectral image from a H × W grayscale snapshot
measurement that is captured using a single diffractive op-
tic and a filterless panchromatic photosensor. This problem
is severely ill-posed, and we present the first model that is
able to produce high-quality results. We train a conditional
denoising diffusion model that maps a small grayscale mea-
surement patch to a hyperspectral patch. We then deploy
the model to many patches in parallel, using global physics-
based guidance to synchronize the patch predictions. Our
model can be trained using small hyperspectral datasets and
then deployed to reconstruct hyperspectral images of arbi-
trary size. Also, by drawing multiple samples with different
seeds, our model produces useful uncertainty maps. We show
that our model achieves state-of-the-art performance on pre-
vious snapshot hyperspectral benchmarks where reconstruc-
tion is better conditioned. Our work lays the foundation for
a new class of high-resolution hyperspectral imagers that
are compact and light-efficient. Project Page

1. Introduction
Snapshot hyperspectral cameras capture detailed spectral
information about a scene at a single moment in time. They
provide a richer representation than RGB images and are
widely used for scientific detection and classification. Snap-
shot hyperspectral cameras have two coupled parts: an op-
tical assembly that encodes a scene’s spatial and spectral
information onto a photosensor, and a digital decoder that
reconstructs the hyperspectral image (HSI) from the photo-
sensor’s measurement. They employ three general strategies
to make the reconstruction problem more tractable [14]: us-
ing complex, multi-stage optics; using a color filter array on
the photosensor; and/or using a photosensor that has more
pixels than the spatial size of the output HSI.

In this paper, we consider the reconstruction problem
for a new, minimalist scenario that is less well-posed and
previously unsolved. That is, we aim to reconstruct a hyper-
spectral image of size H ×W × 31 when the photosensor

Figure 1. The RGB-projection and two representative spectra of
a hyperspectral image reconstructed from the chromatic aberra-
tion encoded in a simulated grayscale measurement. Patches of the
1280× 1280 measurement are processed in parallel using guided
diffusion, and the reconstructed HSI is sampled several times to as-
sess uncertainty. Graphs show model outputs (green), ground truth
(black), and ablated model outputs without guidance (magenta).

pixels are unfiltered (grayscale), the number of measurement
pixels (H ×W ) is equal to the number of output pixels, and
the optical assembly consists of only a single flat optic, like
a diffractive optical element or a metalens. This scenario
is interesting because being able to solve its reconstruction
problem would enable a new class of snapshot hyperspec-
tral cameras that are more compact and light-efficient. Even
though it is severely ill-posed, there is hope that it is not
impossible, because a flat optic can induce purposeful chro-
matic aberration (see Figure 2a) that helps encode spatial-
spectral information into the available measurements.

We introduce a model that produces high-quality recon-
structions for this inverse problem, and we show that no
prior model is able to do so. Our model operates primarily
in patches, so it can be trained using small HSIs and their
simulated measurements, and then deployed on arbitrarily
large ones. In addition, our model provides useful uncertainty
maps, as depicted in Figure 1.

Our model succeeds by combining a patch diffusion pro-
cess with cross-patch, physics-based guidance using the cam-
era’s known optical response. We first train a conditional
diffusion model that learns to map small grayscale measure-
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Figure 2. Forward model. (a) A hyperspectral scene is imaged
through a diffractive lens, producing an optically-coded measure-
ment on a filterless photosensor. (b) For a single HSI scene patch,
(top) the point-spread function (PSF) induces a distinct blur and
shift (bottom) at each wavelength and the measurement patch is
the sum over wavelengths. Our patch diffusion model is trained to
map a single measurement patch to its HSI scene patch; it must
overcome the spatial mixing that occurs between patches.

ment patches to a distribution of plausible hyperspectral
patches. We then deploy this trained model to reconstruct a
larger measurement by splitting it into patches, processing
each patch in parallel with the diffusion model, and syn-
chronizing the patch predictions using diffusion guidance.
The guidance enforces that the collection of patch predic-
tions, when stitched together, compose a full-field HSI that
is optically consistent with the full-field measurement.

We test our method extensively in simulation. In addition
to producing high-quality results for our minimalist scenario,
we find it also performs well for a variety of previous snap-
shot hyperspectral imaging scenarios, such as CASSI [33],
that are better conditioned. This suggests that models similar
to ours could be developed for other computational sensing
scenarios and modalities, such as depth and polarization. All
code and data will be made publicly available. We summa-
rize the contributions of this work as follows.
1. We conduct the first study of snapshot hyperspectral imag-

ing using a filterless photosensor and a single lens, and
we provide insight into lens designs for this task.

2. We show that previous models cannot perform well on
this task, and we introduce a model that does.

3. We demonstrate the unique ability to process measure-
ments of any size, reconstructing high-resolution HSIs
across multiple datasets.

4. We show our model also achieves state-of-the-art perfor-
mance when used in several other snapshot hyperspectral
imaging scenarios that use different sensors and optics.

2. Related Works
HSI Diffusion Models: Recent works have extended
the application of diffusion models to HSIs. In aerial
remote sensing where hyperspectral datasets are large,
unconditioned diffusion models have been successfully
trained from scratch to produce deep feature representations
for classification [10, 43]. However, for natural scenes, HSI
datasets are limited, so prior works have relied on using
frozen, pre-trained RGB diffusion models to do plug-and-
play HSI restoration [39, 51] and compressed sensing [38].
In our work, we train conditional hyperspectral diffusion
models from scratch to better leverage spatial-spectral
statistics. We overcome data scarcity by training on patches
and reducing model size. To our knowledge, hyperspectral
diffusion models have not been previously explored for
predicting HSIs from compressed measurements.

Grayscale to Hyperspectral: Reconstructing HSIs from
grayscale measurements has been previously achieved using
multi-component optical systems such as CASSI [33, 46],
which encodes spatial-spectral information with minimal
ambiguity using relay lenses, a coded mask, a dispersive
prism, and a photosensor with more pixels than those
in the output HSI. Recent improvements to the digital
decoder, such as incorporating channel-wise attention,
have enabled steady improvements to reconstruction
quality [7, 9, 23, 24, 33, 34, 47, 52]. Our approach differs
in three ways. It replaces the CASSI’s multi-component
optics with a flat diffractive element, and it reduces the size
of the photosensor to have the same number of pixels as
in the output HSI. Also, whereas CASSI decoders process
the entire measurement at once, typically at a low spatial
resolution, our model processes measurements in patches
and so can be deployed on arbitrary measurement sizes.

RGB to Hyperspectral: A related direction explores
reconstructing HSIs from measurements captured using a
single lens but with a color filter array on the photosensor.
The simplest examples use regular photographic lenses
and common RGB Bayer filters, with digital decoders
that perform spectral upsampling [1, 2, 8, 53]. Other
systems use diffractive lenses [27, 54] or optimized color
filter arrays [32, 35, 37, 42]. Our approach removes the
requirement for a filter array on the photosensor and so
increases light efficiency. While our model is designed for
the more challenging problem of grayscale to hyperspectral,
we find that it performs well for RGB measurements.

Deep-learned Colorization: Broadly, our work can also be
seen as addressing a multi-channel generalization of the
problem of inferring RGB colorization of grayscale im-
ages [25, 31, 55]. Our task similarly requires inverting a
many-to-one mapping that can be ambiguous. Whereas previ-
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ous RGB colorization approaches have used GANs to handle
ambiguity [26], we instead use a denoising diffusion model.

3. Methods
A hyperspectral image (HSI) x ∈ RH×W×C

≥0 is defined to
be a far-field scene’s undistorted spatial-spectral radiance
after it is mapped to the photosensor plane by an ideal lens
that is focused at infinity. This representation accounts for
geometric magnification and spatial discretization to the
sensor’s pixel size. We define the associated measurement
y ∈ RH×W

≥0 that is induced by a diffractive optical element to
be characterized by the element’s shift-invariant, wavelength-
dependent point-spread function (PSF) f(u, v, λ) via,

y(u, v)=M(x)=
∑
λ

o(λ) · f(u, v, λ) ∗
(u,v)

x(u, v, λ), (1)

where ∗ denotes 2D convolution over the spatial dimensions,
and o(λ) corresponds to the spectral response of a panchro-
matic photosensor. A measurement is thus a linear optical
encoding of a 3D hyperspectral cube to a 2D image, with
the PSF inducing purposeful chromatic aberration that helps
make the decoding problem more tractable.

In §3.1, we discuss the lens and PSF designs that we use
in our simulations. In §3.2 and §3.3, we review denoising dif-
fusion and introduce our patch-based training scheme. Lastly,
§3.4 introduces our guided sampling algorithm, which syn-
chronizes the patch predictions to produce full-field HSIs
that are optically consistent with an input measurement.

3.1. Optical Encoding

For our optical encoders, we consider the set of spatial-
spectral point-spread functions depicted in the middle row of
Figure 3. These PSFs vary in the extent to which they spread
spectral information across space, producing differently-
blurred measurements. Importantly, we choose these PSFs
because they can all be implemented by using a diffractive
lens known as a metalens–a transparent glass sheet patterned
with nanoscale cylinders of equal height and varying widths
[28, 30]. The radius of each nanocylinder controls the local
phase-delay, and each of the PSFs results from a different
arrangement of radii. We computed these PSFs using the
wave-optics simulator DFlat [6, 18, 19], which has been ex-
tensively validated in previous experiments. This provides
confidence that these or comparable PSFs can be realized
in future prototypes. Supplement §A.1 provides additional
details about our PSF design and simulation process.

3.2. Denoising Diffusion

Given a measurement y, we use a conditional denoising
diffusion probabilistic model to sample plausible hyperspec-
tral images x0 from a distribution approximating the data
distribution q(x|y). Following Ho et al. [21], we define a

Figure 3. Spectral PSFs (middle row, projected to RGB) that are
used in our experiments, each inducing a different type of chromatic
smear. For context, we show the ideal achromatic PSF (left) and an
example measurement for each PSF (bottom row). All of the PSFs
can be fabricated using mature metalens technology, and the top
row visualizes the nanocylinder radii pattern that creates each PSF.

“forward process” q(xt|xt−1) := N (xt;
√
1− βtxt−1, βtI)

that corrupts the HSI starting from x0 by adding Gaussian
noise according to a variance schedule {βt}t=1...T . Interme-
diate, noisy HSIs xt are given by

xt =
√
αtx0 +

√
1− αtϵ, ϵ ∼ N (0, I), (2)

with αt =
∏t
s=0(1 − βs). Assuming a sufficient variance

schedule, the latent xT converges to an isotropic Gaussian
distribution for all x0, enabling the subsequent reverse pro-
cess to be seeded by sampling xT ∼ N (0, I).

The conditional “reverse process” q(xt−1|xt,y) is ap-
proximated by a neural network that models the Gaussian
transition pθ(xt−1|xt,y) := N (xt−1;µθ(xt, t;y), βtI). In-
stead of predicting the posterior mean directly, µθ is pa-
rameterized in terms of the noisy input image xt and a net-
work’s noise prediction ϵθ(xt, t;y). The noise prediction
model θ is then trained by minimizing the error L(θ) :=
Ex0,ϵ,t[∥ϵ − ϵθ(xt, t;y)∥2], and a reverse diffusion step is
computed via:

xt−1 =
√
αt−1x̂0(xt) +

√
1− αt−1 − σ2

t ϵθ + w,

x̂0(xt) =
xt −

√
1− αtϵθ√
αt

.
(3)

We adopt the DDIM sampling formalism [45], where
σt is a time-varying constant that controls the stochasticity
of the reverse process and w ∼ N (0, σt). Although the
forward process is defined for a fixed sequence of length T ,
DDIM samples using a shorter sub-sequence of [1, ..., T ] to
accelerate the generation.

3.3. Patch Training

Instead of denoising full-field HSIs directly, we apply diffu-
sion to patches. For training data, we use captured full-field
HSIs from various datasets [1, 2, 11, 40] and prerender the
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Figure 4. Diffusion training. Patches of fixed size are randomly
cropped from ground truth HSIs and their corresponding measure-
ments. A HSI patch is noised to timestep t, concatenated with the
measurement patch, and passed to the noise prediction model.

corresponding full-field measurements using Eq. 1. We then
train our models using pairs of patches (x(i)

0 ,y(i)) that are
randomly cropped from the HSI-measurement pairs. We im-
plement conditioning by concatenation as shown in Figure 4.
Training a conditional patch-based model for this task seems
challenging because, as shown in Figure 2b, the forward opti-
cal process spreads relevant signal outside of the conditional
measurement patch. Nonetheless, we find that training leads
to efficient and stable convergence.

We max-normalize each measurement patch y(i) and each
ground-truth HSI patch x

(i)
0 , and then we scale each of their

values to the usual range [−1, 1]. This means our model
is trained to generate hyperspectral patches that are only
accurate up to an unknown scale factor. In Supplement §A.2,
we discuss this choice further and show that learning to
generate patches with exact scaling is inherently ill-defined.
We correct for the unknown per-patch scales during guided
sampling, discussed next.

3.4. Sampling with PSF Guidance

Applying the denoising formulation in Eq. 3 to patches yields
hyperspectral patch predictions x̂

(i)
0 at intermediary time

steps t. We can use this to guide the sampling of x(i)
t−1 from

x
(i)
t by enforcing additional constraints on x̂

(i)
0 . Previous

works have used this strategy to solve inverse problems [12,
13]. In our work, we use it to enforce that all of the generated
hyperspectral patches, when stitched together, produce a
full-field HSI that is optically consistent with the full-field
measurement according to Eq. 1. Pseudo-code is given in
Algorithm 1. Throughout, we use superscript p to denote a
p-element collection of patches, e.g., xpt = {x(i)

t }i=1,...,p.
During deployment, a full-field measurement y is split

into a set of non-overlapping patches yp, which are concate-
nated with per-patch noise samples xpT . The set of patches is
processed in parallel to produce the intermediate denoised
estimates x̂p0. We define a Stitch() operator that combines
these patch estimates into a full-field HSI, and then we input
this estimated HSI to the measurement operation M() in Eq.

Algorithm 1 Guided Sampling

1: Initialize xpT ∼ {N (0, I)}p
2: Initialize yp = Patch(y, p)
3: while t > 0 do
4: ϵpθ = Model(xpt , t;y

p) ▷ Computed in parallel
5: for j = 0 to n do ▷ Guidance loop
6: cplsq = mincp ∥M(Stitch(cp · x̂p0(x

p
t )))− y∥2

7: L(xpt ) = ∥M(Stitch(cplsq · x̂
p
0(x

p
t )))− y∥2

8: xpt = xpt − η∇xp
t
L(xpt )

9: end for
10: xpt−1 = Denoise(xpt , ϵ

p
θ) ▷ From Eq. (7)

11: end while
12: x0 = Stitch(cplsq · x

p
0)

1. We use this rendered measurement in two ways. First, we
compute optimal per-patch scale values cplsq ∈ Rp by solving
the least-squares problem,

cplsq = argmin
cp

∥M(Stitch(cp · x̂p0(x
p
t )))− y∥2, (4)

which we do non-iteratively and efficiently for megapixel
images by chunking and exploiting sparsity. Then, we rescale
the denoised patch estimates via cplsq · x̂

p
0 before computing

a guidance loss that measures consistency with the input
full-field measurement:

L(xpt ,y) = ∥M(Stitch(cplsq · x̂
p
0(x

p
t )))− y∥2. (5)

This loss guides the denoising updates to all patch predic-
tions by modifying the standard denoising step in Eq. 3 via,

x̃pt = xpt − η∇xp
t
L (xpt ,y) (6)

xpt−1 =
√
αt−1x̂

p
0(x̃

p
t ) +

√
1− αt−1 − σ2

t ϵ
p
θ + wp. (7)

As is common, we repeat the gradient descent step in Eq. 6
multiple times before the denoising step in Eq. 7. We also
find it useful to divide the gradient by its norm before scal-
ing the step-size with η. An overview of the full sampling
scheme is visualized in Figure 5, and we show the time
evolution of HSI predictions in Supplement Figure 10.

We highlight that the diffusion model can generate dif-
ferent HSIs from the same measurement, by changing the
initial noise seeds xpT . We use this to compute a distribution
of plausible inverse solutions by repeating the sampling al-
gorithm multiple times. We then use the variance computed
across repeated samples to capture spectral uncertainty. We
define per-pixel spatial uncertainty maps from N draws via,

Uncertainty =
∑
λ

Var
(
{x0}Ni=1

)
. (8)

4. Experiments
We evaluate our reconstruction algorithm in simulation con-
sidering three different datasets with spatial resolutions rang-
ing from 256×256 up to 1280×1536. Based on our ablation
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Figure 5. A full-field HSI is reconstructed by splitting the input full-field measurement into patches. Measurement patches are concatenated
to hyperspectral patch predictions x(i)

T , which begin as Gaussian noise. Each hyperspectral patch is denoised to obtain an intermediate
prediction x̂

(i)
0 . Guidance comes from stitching these predictions into a full-field HSI, convolving and summing it with the spectral PSF, and

comparing the result to the input full-field measurement. After guidance, the intermediate patch predictions are re-noised to the next timestep
t− 1, and the process repeats. We measure pixel-wise uncertainty by running the process several times with different random seeds.

studies reported in §4.1, we use a patch size of 64 pixels for
all experiments and render grayscale measurements using
the L4S PSF, highlighted in Figure 3. For our denoising net-
work, we adopt a UNet architecture with spatial attention,
inspired by the RGB image synthesis models in [21, 36]. In
contrast to their networks, we reduce the number of Res-
Blocks per layer by half while increasing the network depth.
More details can be found in Supplement §A.3.

In addition to our minimalist grayscale scenario, we also
evaluate performance on other imaging scenarios, including
using RGB measurements captured with and without our
diffractive lens in §4.1 and measurements captured with
CASSI optics in §4.3. Throughout, we sample using 50
DDIM steps and loop the guidance for 10 iterations. Un-
certainty and mean spectra are derived by repeating the re-
construction 10 times with different noise seeds. We quantify
accuracy with structural similarity (SSIM), peak signal-to-
noise ratio (PSNR), and spectral angle (SAM) [50] computed
over full hyperspectral images. For our diffusion model, we
use the mean HSI averaged over repeated samples as a rep-
resentative estimate. Additional details for each experiment
are given in Supplement §A.4 and we discuss the effect of
measurement noise in Supplement §A.5.

4.1. Evaluations on the ARAD1K Dataset

We first train and evaluate our model on measurements
rendered using the ARAD1K dataset [2], which contains
900/50 train/test HSIs captured in both indoor and outdoor
settings. To enable comparisons to previous models that
process full-field measurements without patching, we
spatially downsample all HSIs in this section to 256× 256
and render full-field measurements at that size.

Comparison to Previous Models: We compare our patch-

based diffusion model to a variety of alternative hyperspec-
tral models. This includes five previous networks [8, 9, 23,
24, 33] and a single-stage UNet, whose architecture is a copy
of the one used in our diffusion backbone. These alterna-
tive models map full-field (fixed-resolution) measurements
to full-field HSIs. We train all models from scratch on our
rendered measurements, adhering to their original training
procedures. We introduce as few architectural modifications
as possible, such as replacing the forward and adjoint opera-
tors with our measurement function.

The grayscale-to-hyperspectral reconstruction results are
shown in the left-most column of Table 1 and in Figures 6–7.
(See also Supplement Figures 11–13). Our model achieves
an average PSNR of 34.34, which is 4.3 dB higher than
the next best model. We also achieve a substantially higher
SSIM than other models (0.94 vs. 0.88), which reflects the
large improvement in visual quality when viewing the HSIs
projected to RGB space. These results show that our guided
diffusion model is the only network capable of solving this
problem successfully. It also suggests there is an advantage
to concentrating neural capacity into local patches and tying
them together with guidance, as opposed to spreading out
the neural capacity across larger receptive fields.

Our model also provides uncertainty maps, computed
via Eq. 8, that closely mirror the mean-squared error
(MSE) between predicted and ground-truth HSIs. (See
also Supplement Figure 12). This suggests the uncer-
tainty could be useful for assessing pixel-wise reliability
when the model is deployed in the wild. The quantifi-
cation and use of uncertainty is discussed further in §4.2–4.3.

Model Ablations: Table 2 shows results on the ARAD1K
dataset when using variations of our final model. We test a
patch size of 32 pixels instead of 64, and we try using over-
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Figure 6. Grayscale-to-HSI reconstructions on the ARAD1K test set using the L4S PSF. True and estimated HSIs are projected to RGB,
and insets show the reconstruction error (MSE, second column) and our computed uncertainty maps (third column). Graphs display three
spectral profiles at pixel marked in red. Bold green is our model’s mean spectral estimate and black is ground truth. Green fill is the range of
our model’s predictions over 10 samples (with guidance) and magenta fill is the same without guidance. Predictions from the three next-best
comparison models are shown in dashed red.

Table 1. Reconstruction performance on the ARAD1K test set using grayscale (filterless) and RGB (Bayer) measurements, processed with
our patch-diffusion model and several previous full-field hyperspectral models.

Filterless + Optic Bayer + Optic Bayer

Model SAM ↓ SSIM ↑ PSNR ↑ SAM ↓ SSIM ↑ PSNR ↑ SAM ↓ SSIM ↑ PSNR ↑
Ours 0.12 0.94 34.34 0.06 0.98 41.23 0.07 0.99 45.31
Ours (no guid.) 0.15 0.90 31.55 0.07 0.97 39.00 0.06 0.99 45.43
DGSMP [24] 0.16 0.88 30.04 0.10 0.95 35.99 0.07 0.99 38.47
MST [8] 0.17 0.87 29.80 0.08 0.97 38.08 0.06 0.99 44.56
DAUHST [9] 0.17 0.86 29.72 0.10 0.95 36.04 0.07 0.99 43.51
HDNet [23] 0.17 0.86 29.34 0.08 0.96 36.53 0.06 0.99 44.17
TSANet [33] 0.20 0.87 29.22 0.14 0.93 33.73 0.13 0.96 37.92
UNet 0.15 0.83 29.12 0.07 0.97 38.08 0.08 0.99 42.93

lapping patches (Stride) with only the central portion of each
patch’s prediction x̂

(i)
0 being used for stitching (Supplement

Figure 14). We also test the effect of sampling without guid-
ance (Guid.), which means omitting lines 5–9 in Algorithm 1;
and the effect of sampling without the patch-rescaling step,
which means setting cplsq = 1 in line 6. For the latter test, we
use a separate diffusion model that was trained without patch
normalization (discussed in §3.3). We find that using overlap-
ping patches has little effect when guidance is used but has a
larger effect without guidance. This reaffirms that guidance

is particularly important for pixels near patch boundaries and
that it helps synchronize per-patch predictions. We also find
that solving for the patch-rescale constants cplsq during sam-
pling is important and results in a significantly higher PSNR.
We attribute this performance gap to the ill-conditioning
of our guidance loss when both the scale and shape of the
spectral estimates are mismatched.

Comparison of Lens Designs: Table 3 evaluates the effect
of the PSF design on the reconstruction quality, using the six
PSFs displayed in Figure 3. Grayscale measurements are ren-
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Figure 7. Comparison of our grayscale-to-HSI predictions vs other
trained models, viewed in RGB colorspace.

Table 2. Ablation on Filterless + Optic reconstruction. We probe
inference without patch rescaling (Resc.) and guidance (Guid.), and
for overlapping patches (Stride). See text for more details.

Patch Stride Resc. Guid. SSIM ↑ PSNR ↑
64 32 ✓ ✓ 0.94 34.48
64 - ✓ ✓ 0.94 34.34
64 32 ✓ ✗ 0.92 32.37
64 - ✓ ✗ 0.90 31.55
32 - ✓ ✓ 0.93 33.27
32 - ✓ ✗ 0.87 29.27
64 - ✗ ✓ 0.92 31.77
64 - ✗ ✗ 0.86 27.54

dered with each, and separate diffusion models are trained
for the same number of steps. We find that the reconstruction
accuracy improves with greater spatial-spectral mixing but
seems to do so asymptotically. From this, we suspect that
choosing other PSFs that have a similar spatial extent would
not substantially improve the results. To check whether sim-
pler PSFs might result in HSI estimates that are spectrally
inaccurate but perceptually plausible when projected to RGB,
we project all generated HSI samples to RGB and compute
the Fréchet inception distance (FID) [20] against the ground
truth projected-RGB images.1 Interestingly, we find that FID
also improves with PSF complexity, suggesting they produce
better RGB-projections in addition to better HSIs.

Interpretability: We probe the patch diffusion UNets that
are trained for each PSF to examine what they have learned
by computing perturbation saliency maps [44]. Given a pixel

1Given the small number of images, we expect that relative changes in FID
values are more meaningful than their absolute value.

Table 3. Lens Comparison. AIF refers to an all-in-focus lens with
no chromatic aberration. All metrics are computed on full HSIs
except for FID which is evaluated on RGB projections.

AIF L1 L2 L4 L4S L8S

MSE ↓ 0.15 0.13 0.09 0.04 0.04 0.04
SAM ↓ 0.20 0.17 0.14 0.12 0.12 0.12
SSIM ↑ 0.93 0.92 0.94 0.95 0.95 0.95
PSNR ↑ 29.77 31.01 33.23 34.95 34.86 34.88

FID ↓ 33.77 45.16 21.04 21.89 16.91 16.16

location (rx, ry) in an output hyperspectral patch, we define
the saliency of each input measurement pixel location (i, j)
to be S(i, j | rx, ry) = Ep [

∑
λ|∂x

p
0(rx, ry, λ)/∂y

p(i, j)|].
For each diffusion UNet, we compute an approximation
to this by setting measurement pixels to zero one-by-one,
regenerating the final HSI prediction, and then recording
the change in the spectra at the output pixel. No guidance is
applied here, and saliency for each UNet is averaged over
20 randomly-drawn patches from its test set. The results
are displayed in Figure 8. We find that the saliency maps
closely match the structure of the PSF kernels that were
used to generate the training data, even though these kernels
were otherwise hidden from the model. This suggests that
the UNets learn characteristics of the physical process
that generates the data. Supplement Figures 15–16 show a
visualization of this calculation and additional results where
saliency reveals shift-invariance as would be expected from
the convolution.

RGB Measurements: In the right two columns of Table 1,
we report results from separate experiments for two alterna-
tive optical scenarios that have better conditioning. This in-
cludes using a Bayer-filtered photosensor with: (1) a diffrac-
tive lens that induces the L4S PSF (Bayer+optic) and (2) an
ideal all-in-focus lens that induces no chromatic abberation
(Bayer). We retrain our patch diffusion model in each case,
with the only adjustment being an expansion of the measure-
ment channel dimension from one to three. Again we find
that our model provides substantially higher performance
than all previous models. Interestingly, we also find that in-
cluding an optic with a Bayer filter is generally worse than
using perfectly focused measurements, and that guidance
provides less of a benefit.

4.2. High-Resolution Challenge on ICVL Dataset

A key advantage of our patch-based approach is that it en-
ables the processing of arbitrarily large measurements. We
demonstrate this by introducing a high-resolution reconstruc-
tion challenge. For this, we utilize the ICVL dataset [1],
which contains 200 real-world HSIs captured at a resolu-
tion of 1392 × 1300 pixels. We reserve ten images for the
testing set (resized to 1280× 1280) and allocate the remain-
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Figure 8. Perturbation Saliency Map: The saliency map highlights
pixels in the input measurement patch that most influence the pre-
diction at the center of the output HSI patch. See text for more
details. Saliency should align with the PSF kernel used to generate
the measurements.

ing for training2. To account for differences in sharpness
between the ICVL and ARAD1K datasets (see Supplement
Figure 17), we finetune our model from §4.1 on the training
subset, again using the L4S PSF for rendering grayscale
measurements. After, we generate our reconstructions by
denoising 400 patches in parallel. Performance metrics for
each test image is given in Table 4 and reconstructed HSIs
are displayed in Figure 1 and Supplement Figures 18–19.

We find that our model performs well on all but two test
scenes, producing HSIs that have minimal differences com-
pared to the ground truth (as can be seen in the RGB projec-
tions). We also find that the generated uncertainty maps rea-
sonably predict the failure cases. To further validate this, we
compare the reconstruction MSE against the model’s uncer-
tainty for randomly selected pixels and compute a Pearson’s
correlation coefficient of 0.66. This correlation is visualized
in Supplemental Figures 20–21.

4.3. Application to CASSI Measurements

We show that our patch reconstruction model also performs
well when applied to an existing hyperspectral imaging sys-
tem, specifically CASSI. In this scenario, the optics are
more complex and the reconstruction task is better condi-
tioned. To do this, we use the popular benchmark challenge
from [33] and reconstruct HSIs of size 256× 256× 28 from
coded grayscale measurements of size 256 × 310. Follow-
ing prior works, the rendered grayscale measurements are
pre-processed with a deshearing operation that extracts and
stacks 256× 256 crops from the measurement with a stride
along the smearing direction, as visualized in Supplement
Figure 22. The condition to our diffusion model is then a
64-pixel patch extracted from the 256×256×28 co-aligned
measurement cube.

We train our diffusion model using HSIs from the
CAVE [49] and ARAD1K datasets, and we test our model
on the challenge’s 10 HSIs extracted from the KAIST
dataset [47]. A previous state-of-the-art model on this bench-
mark (outperforming prior algorithms by a large margin)

2This training subset was carefully pruned to remove duplicates and avoid
data-leakage.

Table 4. Grayscale-to-HSI reconstruction performance on the ICVL
1280 × 1280 test set. Average metrics: SAM–0.08, SSIM–0.96;
PSNR–33.83

Img 1 2 3 4 5 6 7 8 9 10

SAM 0.05 0.06 0.08 0.06 0.12 0.05 0.05 0.05 0.10 0.15
SSIM 0.96 0.97 0.96 0.97 0.96 0.96 0.97 0.96 0.94 0.93
PSNR 36.6 35.8 33.4 36.8 33.1 36.1 37.0 35.3 26.4 27.9

is MST-L [7] with an average PSNR of 35.18. Our model
achieves an average PSNR of 35.46. Moreover, by using
our model’s generated uncertainty maps to exclude the 1%
and 5% of pixels with the highest uncertainty values, our
model’s average PSNR increases to 36.20 and 37.31. See
the supplement for a complete table of results (Supplement
Table 6) and for visualizations of the reconstructed HSIs
(Supplement Figure 23).

Unlike all previous methods proposed for this benchmark,
our model has the ability to also reconstruction larger CASSI
measurements. Supplement Figure 24 shows 1280× 1536
pixel HSIs reconstructed from the KAIST dataset by denois-
ing 480 patches in parallel.

5. Limitations
One key limitation of our current model is its inability to
capture long-range correlations across full-field measure-
ments. The guidance step using the PSF enforces only local
coherence. Consequently, the model may successfully recon-
struct an object in one region of the image while failing to
do so in another; this can be observed in the flowers at the
bottom of Supplement Figure 19. Related to this, since our
grayscale approach relies on chromatic aberration as a cue,
the accuracy of individual patch predictions depends on the
presence of spatial textures. Another notable limitation is our
model’s compute time, as compared to previous single-stage
models, when generating full-field HSIs using multiple guid-
ance steps. For example, reconstructing the HSIs in §4.1 on
a single GPU takes approximately 59/30/1 seconds when
looping guidance 10/5/0 times per denoising step.

6. Conclusion
This work introduces a new reconstruction model for snap-
shot hyperspectral imaging with a minimalist setup—a fil-
terless photosensor and a single flat optic—that would make
snapshot hyperspectral imaging more compact, efficient, and
accessible. By developing the first diffusion-based model
that is tailored to this under-determined scenario, we can
produce high-quality HSIs at any spatial resolution using a
simple optical configuration. We also demonstrate the ver-
satility of our model by applying it to previous snapshot
hyperspectral sensing scenarios that are better determined
and achieving state-of-the-art results.
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A. Appendix

A.1. PSF Engineering and Metalens Design

Metalenses are designed by patterning fixed-height, trans-
parent nanostructures across the surface of a glass substrate
[28]. By carefully choosing the shape of the nanostructure at
each location, a metalens can focus incident light of a single
wavelength similar to a spherical lens [29, 30]. In contrast
to refractive lenses, however, metalenses exhibit greater dis-
persion. This enables us to engineer distinct point-spread
functions (PSFs) that have useful chromatic aberration. In
this section, we discuss in detail the method used to generate
our metalens designs. Code for all steps is provided in the
project repository.

Following the approach of [30], we define a metalens Π
as a collection of cylinders with varying radii r, arranged
on a regular grid of points χ, i.e. Π = {r(x, y)}∀(x,y)∈χ.
We consider cylinders made of TiO2, with a fixed height of
600 nm and a grid spacing of 250 nm. Given a particular
configuration, the transformation that the metalens imparts
to normally incident light of wavelength λ can be computed
by solving Maxwell’s equations for the transmitted field.
We denote this mapping as Γ, which can be approximately
evaluated point-by-point and defines a transmittance t and
phase delay ϕ:

Γ (Π, x, y, λ) ≈ Γ (r(x, y), λ) = t(x, y)eiϕ(x,y). (9)

Pre-computed solutions for this mapping are displayed in
Supplement Figure 9, evaluated for different wavelengths
and nanocylinder radii using a finite-difference time-domain
field solver [19].

In order to focus an incident plane wave of wavelength
λ, the collection of nanocylinders on the metalens must be
designed to induce a spatially-varying phase delay at that
wavelength equal to:

ψ(x, y;λ) =
2π

λ

(
c−

√
d2 + (x− δu)2 + (y − δv)2

)
,

(10)
where c =

√
d2 + δu2 + δv2, d is the axial distance to the

photosensor, and δu and δv are the desired translational
offsets of the focal spot.

Notably, the wavelength dependence in Γ (Eq. 9) gen-
erally does not match that in ψ (Eq. 10). Consequently, a
metalens configuration that realizes the focusing condition at
one target wavelength will inherently fail to satisfy the focus-
ing condition at all other wavelengths. We leverage this fact
as a key principle to design PSFs with purposeful chromatic
aberration. Specifically, we define an intermediary collec-
tion of metalenses that are each optimized to focus light
under different conditions (incident wavelengths and focal
positions), enumerated by the subscript j, via the following

Figure 9. Nanocylinder Optical Response: The colormap displays
the local transmittance (left) and phase delay (right) imparted to
incident light of wavelength λ that passes through a nanocylinder
with radius ∈ [15, 110] nm. The phase imparted by a nanocylinder
with a particular radius (row in the colormap) changes significantly
with wavelength which causes chromatic aberration in the PSFs.

objective:

Πj = min
r(x,y)

∥∥∥Γ (r(x, y), λj)− eiψ(x,y;λj ,δuj ,δvj)
∥∥∥2 . (11)

We then spatially multiplex these intermediary metalenses
using a set of orthogonal, binary selection masks Si [4, 16]
to produce a final, composite metalens Π̃:

Π̃(x, y) =
∑
j

Sj(x, y) ·Πj(x, y). (12)

This process is repeated under different conditions to
obtain the collection of composite metalenses evaluated in
this work (Figure 3 in the main paper). We consider for our
selection masks: (1) angular multiplexing, where each mask
Sj is set to 1 for pixels within a particular angular range and
0 elsewhere, like in metalenses “L4S” and “L8S”; and (2)
spatial interleaving, where Sj is a random binary mask, like
in metalenses “L2” and “L4”.

Throughout, we label composite metalenses according
to the number of intermediary metalenses that have been
multiplexed. For example, “L2” combines two metalenses
while “L4” combines four. We use the letter “S”, as in “L4S”,
to denote a large shearing in the PSF, achieved by design-
ing the intermediary lenses to focus off-axis with a large
translational shift δu and δv in Eq. 10.

Finally, given a composite metalens Π̃, we compute its in-
tensity point-spread function f by per-channel field propaga-
tion a distance d using the Fresnel diffraction equation [15],

f(u, v, λ) =

∥∥∥∥∫∫ Γ
(
Π̃, x, y, λ

)
Q(u, v;x, y)dxdy

∥∥∥∥2
Q(u, v;x, y) =

eikd

iλd
exp

[
ik

2d
((x− u)2 + (y − v)2)

]
.

(13)

We set the distance d (corresponding to the lens-to-sensor
distance) to 1 cm and compute the PSF assuming a sensor
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pixel size of 5 µm. The spatial extent of the resulting PSFs
are approximately fully confined to 64x64 pixels, ≈ 320 µm
in spread. The minimization in Eq. 11 and the propagation
in Eq. 13 are computed using the open-source (PyTorch)
package DFlat [18, 19]. This package also contains the pre-
computed data for the optical mapping Γ(r(x, y), λ) used in
this work and displayed in Supplement Figure 9.

A.2. Patch Normalization during Training

As introduced in §3.3 of the main paper, our diffusion model
generates HSI patches, conditioned on measurement patches,
that are accurate only up to a scale factor. We note that
learning the exact scale for patches is generally challenging.
In this section, we discuss the source of this difficulty and
our decision to normalize patches during training.

We first consider the full-field HSI x and its corre-
sponding full-field measurement y, related by the operator
y = M(x) (Eq. 1 in the main paper). From the perspective
of both data standardization and physical interpretation, we
require a normalization applied to x and y.

From a physical perspective, full-field HSIs must be nor-
malized to ensure that HSIs differing only by a global scale
factor are considered equivalent. This scale difference can be
attributed to variations in the illumination source brightness,
which should not influence downstream tasks like classifi-
cation. Similarly, the measurements must be normalized to
ensure that the prediction of a scene’s HSI does not change
by altering the exposure time during capture. To address
this, we normalize x and y by their max values as a pre-
processing step. When extracting a pair of patches x(i)

0 and
y(i), we would then obtain the training pair:(

y(i)

max(y)
,

x
(i)
0

max(x0)

)
. (14)

From the perspective of data standardization, we would re-
quire a similar normalization as well. Deep learning models
are sensitive to the scale of input features and perform best
when both the input and output are normalized to a standard
range.

To see the problem with this formulation, however, we
can equivalently consider this task in terms of learning from
the training pair: (

y(i),
max(y)
max(x0)

x
(i)
0

)
. (15)

The target hyperspectral patch has its scale set by the factor
max(y)/max(x0), which is indeterminable from looking
at a measurement patch alone. In other words, the model
input y(i) matches to many target hyperspectral patches of
different scales. For this reason, we instead max-normalize
the patches directly, which results in the more well-posed

training pair: (
y(i)

max(y(i))
,

x
(i)
0

max(x(i)
0 )

)
. (16)

This formulation satisfies data standardization and removes
the scale ambiguity. As discussed in the main text, the op-
timal per-patch scales can later be identified by comparing
the predicted measurement against the camera’s captured
measurement.

A.3. Diffusion Model Parameters

We provide additional details for our diffusion model ar-
chitecture and training schedule here. Our diffusion model
utilizes a UNet backbone that is most similar in structure
to the early RGB image synthesis models introduced by Ho
et al. [21] (see also the PyTorch port by OpenAI in [36]).
In contrast to their model, we use one ResBlock per stage
instead of two/three. We also increase the UNet depth from
four to five stages, meaning the network downsamples five
times and then upsamples five times. We conducted several
experiments early on and found that deeper models signifi-
cantly outperformed wider models on this problem.

By introducing this change, we also substantially reduced
the number of trainable parameters which helped to prevent
over-fitting. In total, our UNet contains 75M trainable pa-
rameters. For comparison, the ImageNet-64 diffusion model
in [36] contains 270M parameters in the UNet and Stable
Diffusion 1 (2022) [41] contains approximately 890M pa-
rameters.

In early explorations, we also extensively tested the use
of attention applied along the channel dimension. Channel-
wise attention is used in all prior hyperspectral neural net-
works evaluated in §4.1 of the main paper. Broadly, it is
also analogous to temporal attention found in most recent
video diffusion models [5, 22, 48]. Interestingly, however, we
found negligible improvement in performance when adding
channel-wise attention to our diffusion UNets. We hypoth-
esize that the spectral correlations in our task are simple
enough to be captured fully by the 2D convolution blocks.

We provide a full summary of our model configuration in
Supplement Table 5.

A.4. Additional Experiment Details

Training: All models are trained from scratch for 72 hours
using a single desktop NVIDIA RTX 3090 (32 GB) or
equivalent GPU. Throughout, we apply random horizontal
and vertical flip augmentations to the full-field HSIs before
rendering measurements and extracting patches.

HSI Evaluation Metrics: We provide the formulas used for
computing the evaluation metrics on HSIs. Following, we
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Parameter Value
Beta Scheduler Linear
Loss L1 - Epsilon
Timesteps 1000
Kmin-SNR [17] 5.0
Input Size Patch size, 64× 64
Input Channels λ-dim + y-dim (31 + 1)
Output Channels λ-dim (31)
Resblocks Per Stage 1
Time Embedding 1024
Time Embedding Scale+Shift False
Layer Channels [64, 128, 256, 512, 512]
Attention All stages
Attention Head Dim 32
Group Norm Dim 32
Learning Rate Cosine (1e−4, 1e−6)
Batch Size 64
Skip-Connection Convolutions False
Downsample Convolution True
EMA 0.9999

Table 5. Summary of Model Configuration

denote the full-field ground truth HSI as x(i, j, λ) and the
reconstructed HSI as x̂(i, j, λ) with shape (H ×W × C).

Although there are other formulations for PSNR when
generalized to HSIs, we choose to follow the definition used
in prior grayscale-to-hyperspectral works and compute the
mean PSNR via,

PSNR =
1

C

∑
λ

10 log10

(
max(x, x̂)

1
HW

∑
i,j(x− x̂)2

)
. (17)

We define the mean SAM via,

SAM =
1

HW

∑
i,j

θ(i, j) (18)

θ(i, j) = cos−1

( ∑
λ x⊙ x̂√

(
∑
λ x

2)(
∑
λ x̂

2)

)
(19)

where ⊙ denotes the Hadamard product. Lastly, we compute
mean SSIM for HSIs by computing the standard single-
channel 2D SSIM, denoted by operator S, for each wave-
length channel and then averaging via,

SSIM =
1

CHW

∑
i,j

∑
λ

S(x(:, :, λ), x̂(:, :, λ)) (20)

RGB Measurements: In §4.1 of the main paper, we
evaluate our reconstruction model when conditioned
on three-channel RGB measurements. Each channel is
rendered using Eq. 1, where the photosensor’s spectral
response o(λ) is set to the quantum efficiency of the R,

G, and B channels in the Basler Ace 2 camera. Quan-
tum efficiency estimates are taken from [3]. We note
that our treatment does not take into account spatial
demosaicing, which is necessary when using a Bayer
filter mosaic. Consequently, we expect that our results
represent an upper bound on performance, as it assumes no
information loss when increasing the measurement channels.

ICVL Reconstructions: In §4.2, we conduct experiments
using the ICVL HSI dataset [1]. The original HSIs contain
519 spectral bands, captured at wavelengths ranging from
400−1000 nm. For our experiment, we keep only 31 spectral
bands between 400− 700 nm, linearly interpolated to 10 nm
increments. This is done to match the ARAD1K dataset that
is used in §4.1. When finetuning our model, we initialize it
with an existing checkpoint and train for an additional 24
hours using a fixed learning rate of 1e−6.

We also used the finetuned model to quantitatively
analyze the relationship between per-pixel MSE and
estimated uncertainty on the test set. To compute the
Pearson correlation coefficient within memory constraints,
we sampled a subset of 10k pixels randomly from each
reconstructed HSI. The relationship between MSE and
uncertainty for these sampled pixels is visualized using
color coding in Supplement Figure 21.

CASSI Reconstructions: In §4.3, we train a diffusion
model to process measurements captured using CASSI op-
tics. The model is designed to reconstruct 28 hyperspectral
bands evenly spaced between 450 nm and 650 nm, follow-
ing the HSI benchmark challenge proposed in [33]. Our
combined training set consists of 32 HSIs from the CAVE
dataset and 900 from the ARAD1K dataset, sampled without
re-weighting. These HSIs are linearly interpolated to align
with the model’s spectral channels.

A.5. Robustness to Measurement Noise

In this section, we show that our hyperspectral reconstruc-
tion algorithm performs well even when the captured mea-
surements have significant noise. To demonstrate this, we
simulate camera measurements ynoisy by adding Gaussian
noise with variance σ2 to the noiseless measurements via,

ynoisy = max
(
M(x) +N (0, σ2), 0

)
, (21)

where M is the noiseless measurement operator defined in
Eq. 1 of the main paper. The max operation ensures that
negative pixel values are clipped to zero.

To account for the measurement noise during reconstruc-
tion, we then modify our guidance loss function to a regular-
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Figure 9. Reconstruction accuracy on the ARAD1K test set when measurements are corrupted with additive Gaussian noise: The
amount of Gaussian noise added to each measurement (controlled by the variance σ2) is tuned such that measurements are captured at fixed
SNR= mean(y)/σ. Noisy training means that the diffusion model was finetuned on noisy measurements and noiseless training means the
model was only trained on noiseless measurements. Guid. refers to measurement-consistent guidance applied during sampling. See text for
more details.

ized least-squares loss via,

L(xpt ,ynoisy) =
1

σ2
∥ŷ − ynoisy∥2︸ ︷︷ ︸

data fidelity

+ ζTV(ŷ)︸ ︷︷ ︸
regularization

(22)

ŷ = M
(

Stitch(cplsq · x̂
p
0(x

p
t ))
)

(23)

The data fidelity term measures the squared error between the
predicted observation ŷ and the noisy measurement ynoisy,
which is scaled by 1/σ2 to adapt to different noise levels.
The TV-regularization term, TV(ŷ), is applied to the pre-
dicted observation and discourages the generation of HSIs
that reproduce the high-frequency noise in the measurement.
This term is particularly effective because the measurements
should be smooth due to convolution with the PSF, making
the choice of the scaling factor ζ less sensitive. We set ζ to a
fixed value of 1e2.

We investigate the model’s sensitivity to noise by recon-
structing HSIs using two variations of our diffusion model:
one trained on noiseless measurements and another finetuned
on noisy measurements. The sampling process is guided by
the regularized loss described above, with the number of
guidance loops reduced from 10 to 4 (see Algorithm 1). For
each test measurement, we adjust the variance σ2 of the
added Gaussian noise to achieve a fixed signal-to-noise ratio
(SNR), defined as SNR = µ/σ where µ is the mean intensity
of the measurement.

In the first variation, we use the models introduced in
§4.1 of the main paper, which were trained solely on noise-
less measurements. In the second variation, we use models
finetuned on noisy training pairs:(

y
(i)
noisy

max(y(i)
noisy)

,
x
(i)
0

max(x(i)
0 )

)
. (24)

During finetuning, noise levels are randomly sampled by se-
lecting SNR values uniformly between 10 and inf (no noise).
We run this training for 24 hours using a fixed learning rate
of 1e−6.

We evaluate the reconstruction accuracy by computing
the PSNR between the predicted and the ground truth HSIs,
as defined in Eq. 17 (same as in the main paper). We test
using measurements rendered from the three optical config-
urations (filterless and Bayer) discussed in §4.1 and using
different noise levels with an SNR between 5 and inf . The
results from this study are shown in Figure 9. Each data point
represents the average PSNR from 30 different test scenes,
each resampled 5 times. We also present results without
guidance for comparison.

Our results show that reconstructions are reasonably ro-
bust to measurement noise for all three optical configura-
tions. Moreover, training with noisy measurements improves
the reconstruction performance when processing noisy mea-
surements. This benefit is more pronounced when generat-
ing samples without guidance. In scenarios where the mea-
surement contains purposeful chromatic aberration (Filter-
less+optic and Bayer+optic), guidance improves reconstruc-
tion results, but its benefits diminish as noise levels increase.
When the measurement is highly corrupted (SNR ≈ 5), guid-
ance during sampling becomes uninformative and can pro-
duce worse results. Notably, when processing all-in-focus
RGB measurements (Bayer), guidance offers no improve-
ment at any noise level, consistent to our finding in the main
paper for noiseless measurements.

Lastly, we comment on our noise model choice. We eval-
uate a Gaussian noise model here because our guidance loss,
of the form ∇xt∥M(x̂0(xt))− ynoisy∥22, is theoretically op-
timal for Gaussian noise. We expect to find similar results
for other noise models, assuming that the guidance likeli-
hood is appropriately adjusted. For example, with Poisson
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Scene
TSA-Net [33] DGSMP [24] MST-S [7] MST-L [7] Ours Ours-99% Ours-95%
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

1 32.03 0.89 33.26 0.92 34.71 0.93 35.40 0.94 35.60 0.95 36.25 0.96 37.53 0.97
2 31.00 0.86 32.09 0.90 34.45 0.93 35.87 0.94 33.88 0.95 34.51 0.95 35.56 0.96
3 32.25 0.92 33.06 0.93 35.32 0.94 36.51 0.95 37.79 0.95 37.92 0.95 38.17 0.96
4 39.19 0.95 40.54 0.96 41.50 0.97 42.27 0.97 43.15 0.98 44.13 0.99 44.84 0.99
5 29.39 0.88 28.86 0.88 31.90 0.93 32.77 0.95 34.94 0.97 35.64 0.97 37.06 0.98
6 31.44 0.91 33.08 0.94 33.85 0.94 34.80 0.95 34.80 0.96 36.11 0.97 38.17 0.97
7 30.32 0.88 30.74 0.89 32.69 0.91 33.66 0.93 32.29 0.93 32.93 0.93 33.90 0.94
8 29.35 0.89 31.55 0.92 31.69 0.93 32.67 0.95 33.53 0.95 34.98 0.96 37.42 0.97
9 30.01 0.89 31.66 0.91 34.67 0.94 35.39 0.95 36.83 0.95 37.05 0.96 36.88 0.96

10 29.59 0.87 31.44 0.93 31.82 0.93 32.50 0.94 31.80 0.94 32.25 0.95 33.64 0.97
avg 31.46 0.89 32.63 0.92 34.27 0.94 35.18 0.95 35.46 0.95 36.20 0.96 37.31 0.97

Table 6. CASSI reconstruction challenge full table: Comparison of our HSI reconstruction algorithm (trained on 64 pixel patches) vs
previous state-of-the-art models (trained on full-size measurements) on ten test images extracted from the KAIST Dataset. Values for other
methods are pulled from the recent work [8]. Ours-X% corresponds to the weighted metrics when keeping the X% of pixels with the lowest
uncertainty, identified using our diffusion model uncertainty map.

noise, one can adopt the guidance loss introduced by Chung
et al. [12], of the form ∇xt∥M(x̂0(xt))− ynoisy∥2Λ, where
∥ · ∥Λ denotes a particular weighted quadratic norm that is
theoretically optimal for Poisson noise.

15



Figure 10. Time evolution of two reconstructed HSIs, sampled with guidance: The measurement is split into 16 patches and the HSI
prediction begins as random Gaussian noise. We display the intermediate patch predictions xp

t and denoised patch estimates x̂p
0 after they

have been stitched together into the full-field HSIs xt and x̂0, respectively. The denoised estimates x̂0 are displayed after patch rescaling
using the coefficients cplsq from Eq. 4 in the main text. The line-plots display the predicted spectral radiance for the three demarcated pixels,
with fill denoting the min-max predictions from a batch of samples (starting with different noise seeds). The spectral predictions become
more accurate with each denoising timestep.
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Figure 11. Additional HSI reconstructions on the ARAD1K test set: See caption in Figure 6 of the main text.
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Figure 12. Enlarged MSE and uncertainty maps: These correspond to the insets from Figure 6 in the main text and selected insets from
Supplement Figure 11. Images are rescaled with a gamma transformation I ′ = (I/max(I))0.5 to enhance visibility.
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Figure 13. Additional comparisons of our HSI estimates (projected to RGB colorspace) vs other models: See Figure 7 of the main text
for other examples.
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Figure 14. Visualization of strided patching and stitching: The
principle is displayed here with an RGB image for clarity only. We
use a patch size of 64x64 pixels and a 32x32 pixel stride. The strided
patching is used to split a full-field measurement into overlapping
patches. Each patch is passed as a condition to the diffusion model
to generate a set of overlapping hyperspectral patch predictions. The
stiching mask is used to combine the hyperspectral patch predic-
tions, keeping only the pixels in the center (white) and discarding
those in the overlapping region (black).

Figure 15. Visualization of the perturbation saliency calculation:
We first generate a hyperspectral patch prediction x

(p)
0 , conditioned

on the measurement patch y(p). We then compute the saliency of
a pixel (i, j) in a measurement patch (the active probe) relative
to a pixel (rx, ry) in the output (reference probe) by setting that
measurement pixel to zero, regenerating the hyperspectral patch
prediction, and computing ∆x

(p)
0 (rx, ry)/∆y(p)(i, j). The same

noise seed for x(p)
T is used with non-stochastic sampling via DDIM.

Figure 16. Additional perturbation saliency maps: We show saliency maps computed for the L8S PSF and diffusion model (similar to the
rightmost column in Figure 8 in the main paper), but viewed here for other reference probe locations in the output hyperspectral patch. We
find that the saliency aligns well with the PSF kernel and the structure shifts as the reference probe is moved. This property aligns with the
shift-invariant rendering equation used to generate the measurement patches.

Figure 17. Comparison of textures in ICVL vs ARAD Patches: We randomly draw and display 20 hyperspectral patches from each
dataset (not cherry-picked). We observe that the HSIs in the ICVL dataset are blurrier than in the ARAD1K which causes a domain-shift.
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Figure 18. High-resolution 1280x1280 grayscale-to-HSI reconstructions on the ICVL dataset: Test Scenes 1-5. True and estimated
HSIs are projected to RGB, and insets show the reconstruction error (MSE, second column) and our computed uncertainty maps (third
column). Graphs display three spectral profiles at pixel marked in red. Bold green is our model’s mean spectral estimate and black is ground
truth. Green fill is the range of our model’s predictions over 10 samples (with guidance) and magenta fill is the same without guidance.
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Figure 19. High-resolution 1280x1280 grayscale-to-HSI reconstructions on the ICVL dataset: Test Scenes 6-10. See caption in
Supplement Figure 18 for more details.
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Figure 20. Visualization of uncertainty in ICVL HSI reconstructions: We display the HSI reconstructions (projected to RGB colorspace)
with the 3 highest and 3 lowest average PSNR. Uncertainty maps are displayed with the same color scaling across all six images. We show
qualitatively that the magnitude of predicted uncertainty accurately reflects the increased error in the estimates.

Figure 21. Scatter plot of uncertainty vs true MSE in ICVL
HSI reconstructions: We randomly select 10k pixels from each
reconstructed HSI in the test set. Different colors correspond to
different test images. We compute a Pearson correlation coefficient
of 0.66 confirming that uncertainty is a strong predictor of error.

Figure 22. CASSI measurement model: A scene HSI is modulated
by the spatially-varying binary mask. Each wavelength channel is
then sheared by a dispersive prism resulting in a wider grayscale
measurement. The measurement is then “desheared” and stacked
(see main text). The diffusion model is trained with patches ran-
domly cropped from the ground truth HSI and the tiled measure-
ment.
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Figure 23. 256x256 grayscale-to-HSI reconstructions on the CASSI benchmark challenge: True and estimated HSIs are projected
to RGB colorspace for visualization in the second and third row. To highlight the alignment of uncertainty and reconstruction errors, we
overlay the diffusion uncertainty map on top of a grayscale projection of the estimated HSI in the fourth row. Graphs depict spectral radiance
predictions for the pixels demarcated in red. Our mean prediction is given in bold green, ground truth in black, and the min-max estimate
range with guidance (green) and without guidance (magenta) computed from repeated sampling.
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Figure 24. High-resolution 1280x1536 grayscale-to-HSI reconstructions on the KAIST Dataset: We use our diffusion model trained on
CASSI measurements to reconstruct HSIs that are substantially larger than in the benchmark challenge. Measurements are split into 480
patches (denoted by the red grid) which are denoised in parallel. The first row of the ”Hyperspectral Slice” (right) displays our 2D radiance
predictions for different spectral bands. The second row displays the ground truth. We find good agreement between the two.
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