Optimization of Metasurfaces for Computational Imaging

Dean Hazineh | PhD Candidate Applied Physics

Advisors: Todd Zickler, Federico Capasso

CSE Oral Presentation

April 26, 2024

Conventional Imaging Systems

Design principle of all conventional cameras is largely the same:

- A single point in the scene should project to a single point on the photosensor
- Captured measurements are *undistorted projections* of scene, *close* the *final image*

 \rightarrow The design of computational imaging systems deviates from this idea

Centuries pursuit of the Ideal Lens

→ Moving away from *ideal* focusing to structured point-spread functions enable better vision systems and cameras
→ How we engineer the point-spread function for computational imaging with a new type of lens, metasurfaces

[1] Effect_of_third-order_aberrations_on_dynamic_accommodation [2] https://wiley-vch.e-bookshelf.de/products/reading-epub/product-id/5030654/title/Optical

Biological vision: Depth from Defocus

Features of a Scene: Depth, Spectral Radiance, Polarization

Features of a Scene: Depth, Spectral Radiance, Polarization

Spectral Radiance

[3] Hyperspectral Depth Dataset From: https://vclab.kaist.ac.kr/iccv2021/dataset.html

Features of a Scene: Depth, Spectral Radiance, Polarization

(exemplary)

All three features of a scene can in principle be measured in a single snapshot then reconstructed with computational imaging, if they are optically encoded with a specialized lens (feature-dependent point-spread function) 7

Computational Imaging and Sensing

- How can we recover the full information of a scene (or best encode the quantities in the measurement)
- Why: We require more than just a 2D spatial map of a scene (*ideal* image) to interact with the world (e.g. AR/VR)
 - Material ID/Classification
 - Depth (3D modeling)
- Segmentation
- Scientific sensing (wavefront phase, angle of incidence...)

Computational Imaging and Sensing

- How can we recover the full information of a scene (or best encode the quantities in the measurement)
- Why: We require more than just a 2D spatial map of a scene (*ideal* image) to interact with the world (e.g. AR/VR)
 - Material ID/Classification
 - Depth (3D modeling)
- Segmentation
- Scientific sensing (wavefront phase, angle of incidence...)

Open-source software (Tensorflow & Pytorch) Auto-differentiable framework specially geared to cooptimization of flat optics with post-processing networks

D-Flat: A Differentiable Flat-Optics Framework for End-to-End Metasurface Visual Sensor Design, D. Hazineh et al, 2022

Metasurfaces (Metalens)

(Left) Photo E. Tseng et al., Neural Nano-Optics for High-quality Thin Lens Imaging

Metalenses can transform and structure incident light in ways that other devices cannot!

• Polarization, depth, and wavelength dependent point-spread functions

Metasurfaces (Metalens)

Photo: M. Khorasaninejad et al. (Capasso Group)

Metasurface **Design Theory**

Metasurface **Design Theory**

→ (approximation) Meta-atom as building blocks
→ Build dataset by sweeping & solving Maxwell's Equations

- 1. Auto-differentiable field solver (RCWA, FDFD)
- 2. Neural Representation

- 1. Auto-differentiable field solver (RCWA, FDFD)
- 2. Neural Representation

Code designed for versatility and scale

(One of the key value propositions of DFlat):

Manage large collection of meta-atom datasets

- Every shape type, material, block size, requires a new pre-computed dataset
- ightarrow Query a dataset by name and automatically download it from server
- → Datasets have a standard form (class) speeding up integration to ML pipeline
- \rightarrow Integrated field solver to generate new datasets

Code designed for versatility and scale

(One of the key value propositions of DFlat):

Manage large collection of meta-atom datasets

- Every shape type, material, block size, requires a new pre-computed dataset
- \rightarrow Query a dataset by name and automatically download it from server
- → Datasets have a standard form (class) speeding up integration to ML pipeline
- \rightarrow Integrated field solver to generate new datasets

Manage large collection of pretrained neural networks

- MLPs will have different input-output dimensions (for different meta-atoms)
- Different architectures (ex. number layers, attention, etc.)
- Different pre-processing steps and normalization terms (min/max shapes)
- → Pre-trained models called by name and model weights/configuration files are downloaded from server
- \rightarrow Models are assembled on the fly according to the configuration file
- → Inherit standardized class/parent so user functionality is the same regardless of the meta-atom/dataset choice

Auto-Differentiable Field Propagation

Auto-Differentiable Field Propagation

Different numerical implementations of field propagation:

- Fresnel Method: x1 Fourier/Hankel transform (approximate)
- Angular Spectral Method: x2 Fourier/Hankel transforms (exact)
- **Discrete Integration:** Pixel space transformation (exp., exact)

Desirable implementation involves many steps (method dependent)

- Up-sample user provided profile according to few conditions
- Zero-padding determines output field discretization (λ , z)-dependent
- Resample output field to a pixel size grid if sub-pixel sampling

 \rightarrow There are many scenarios where one method is more efficient than the other

Operation in computational imaging research that we wanted to standardized and provide for others
01

Point-Spread Function Optimization

Optimize the shapes on a metasurface to produces a simple multi-focci point-spread function at the sensor plane

 \rightarrow Exists analytic solution for the ideal phase and transmission profile to produce each focal lobe alone but not obvious how to optimally merge the many behaviors into one lens.

Task-Specialized Vision: Optical Computing

Replace digital image processing (e.g. edge-detection) with cheaper opto-electronic operations

Task-Specialized Vision: Optical Computing

Replace digital image processing (e.g. edge-detection) with cheaper opto-electronic operations

Point-Spread Function Optimization

Dflat Goal: Make the optimization of flat optics as easy as optimizing a deep neural network (code perspective)

- → Using pre-trained metasurface models should be as easy as using a pre-trained CLIP or Perceptual Loss Challenge: Each metasurface model is like a CLIP trained in a different language (different tokenizers, datasets...)
- → Modules for point-spread functions/propagations should be as easy as using Conv2D layer Challenge: Managing large number of branches in code for different approximations and configurations

Additional piece not discussed as much in this talk:
Image Rendering PSF Convolution Resampling Filtering & Noise
25

Free and Open Source:

- Continuous Integration / Pytest Workflow
- Complete docstrings (missing new readthedocs)
- Available on Python Package Index (PyPi) as "dflat_opt"
- Nightly versions on Github

A lot of open computational projects for all skill levels: (email @ <u>dhazineh@g.harvard.edu</u> or give it a try) (Contact Todd Zickler for CS / Federico Capasso on Fabrication)

- Differentiable field solvers
- Large area topology optimization for high-dimensional shapes
- *Memory efficient propagation (bottleneck)
- Co-Optimization with CNNs
- Rendering without shift-invariant PSF assumption
- Gradient checkpointing and other code improvements

Extra

Auto-Differentiable Field Propagation

Validation of implementations against experiment

Different numerical implementations of field propagation:

- **Fresnel Method:** x1 Fourier/Hankel transform (approximate)
- Angular Spectral Method: x2 Fourier/Hankel transforms (exact)

Experimental data from Dr. Daniel Lim, Capasso Group

