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Conventional Imaging Systems

v

1940 2010 2020
1839: First photographic lens — modern cameras
1550: Images made w/ concave mirror & lenses

-500 (BC): Camera Obscura (Pinhole Camera)

Design principle of all conventional cameras is largely the same:

* Asingle pointin the scene should project to a single point on the photosensor
 Captured measurements are undistorted projections of scene, close the final image

- The design of computational imaging systems deviates from this idea



Centuries pursuit of the Ideal Lens
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- Moving away from ideal focusing to structured point-spread functions enable better vision systems and cameras
- How we engineer the point-spread function for computational imaging with a new type of lens, metasurfaces

[1] Effect_of_third-order_aberrations_on_dynamic_accommodation 3
[2] https://wiley-vch.e-bookshelf.de/products/reading-epub/product-id/5030654/title/Optical



https://www.researchgate.net/publication/6523438_Effect_of_third-order_aberrations_on_dynamic_accommodation
https://wiley-vch.e-bookshelf.de/products/reading-epub/product-id/5030654/title/Optical

Biological vision: Depth from Defocus
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Qi Guo et al., Compact single-shot metalens depth sensors inspired by eyes of jumping spiders, 2019 PNAS 116 (46) 22959-22965



Features of a Scene: Depth, Spectral Radiance, Polarization

Depth Spectral Radiance Polarization

[3] Hyperspectral Depth Dataset From: https://vclab.kaist.ac.kr/iccv2021/dataset.html



Features of a Scene: Depth, Spectral Radiance, Polarization

Depth Spectral Radiance Polarization

Spectral Radiance
470 nm 510 nm 560 nm 600 nm 650 nm 700 nm

[3] Hyperspectral Depth Dataset From: https://vclab.kaist.ac.kr/iccv2021/dataset.html






Features of a Scene: Depth, Spectral Radiance, Polarization

Depth Spectral Radiance Polarization

(Xx-polarized) (y-polarized)

Polarization _ .
+— 0 polarized I 90 polarized /45 polarized 135 polarized

(exemplary)

All three features of a scene can in principle be measured in a single snapshot then reconstructed with computational
imaging, if they are optically encoded with a specialized lens (feature-dependent point-spread function) 7



Computational Imaging and Sensing

How can we recover the full information of a scene (or best encode the quantities in the measurement)
Why: We require more than just a 2D spatial map of a scene (ideal image) to interact with the world (e.g. AR/VR)

Material ID/Classification
Depth (3D modeling)

- Segmentation

- Scientific sensing (wavefront phase, angle of incidence...)
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Computational Imaging and Sensing

* How can we recover the full information of a scene (or best encode the quantities in the measurement)
*  Why: We require more than just a 2D spatial map of a scene (ideal image) to interact with the world (e.g. AR/VR)

- Material ID/Classification - Segmentation
- Depth (3D modeling) - Scientific sensing (wavefront phase, angle of incidence...)

Depth

Render Measurement Algorithm Output
n n
[+ ] [+ ] - Seg. Mask
Lens - Model - i Degpth = LOSs Y|Output — Feature|?
parameters | _ parameters | _ | Spectral <«— Gradients

End-to-End Optimization
Render

D — Open-source software (Tensorflow & Pytorch)
parlz;?nnesters » | a Auto-differentiable framework specially geared to co-

optimization of flat optics with post-processing networks

D-Flat: A Differentiable Flat-Optics Framework for End-to-End Metasurface Visual Sensor Design, D. Hazineh et al, 2022



Metasurfaces (Metalens)

photosensor

m(a’,y’)
metalens

(Left) Photo E. Tseng et al., Neural Nano-Optics for High-quality Thin Lens Imaging

Metalenses can transform and structure incident light in ways that other devices cannot!
* Polarization, depth, and wavelength dependent point-spread functions
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Metasurfaces (Metalens)

Photo: M. Khorasaninejad et al. (Capasso Group)

50 um

det HV curr  spot WD HFW  magEH dwell PW. frame  Aperture ]
ETD 5.00 kV 0.10 nA 8.0 14.7 mm 199 pm 695 x 5ps 48.5 nm 1.2 min 32 pm

Metalenses can be millimeters to
centimeter scale in diameter but must be
modeled at a subwavelength scale (~300
nanometers)




Metasurface Designh Theory

metasurface shape parameters optical response
II(z,y)
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Metasurface Designh Theory

Fixed Wavelength (530 nm)
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—> (approximation) Meta-atom as building blocks
- Build dataset by sweeping & solving Maxwell’s Equations 13



Auto-Differentiable Optical Model

1. Auto-differentiable field solver (RCWA, FDFD)
2. Neural Representation
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Auto-Differentiable Optical Model
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Auto-Differentiable Optical Model
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Auto-Differentiable Optical Model

Code designed for versatility and scale

Optical Model

@ Pre-trained
Neural

Auto-diff.
Field Solver

1
(z,y)

(One of the key value propositions of DFlat):

Manage large collection of meta-atom datasets

- Every shape type, material, block size, requires a new pre-computed dataset

- Query a dataset by name and automatically download it from server

- Datasets have a standard form (class) speeding up integration to ML pipeline

- Integrated field solver to generate new datasets

17



Auto-Differentiable Optical Model

Optical Model

@ Pre-trained
Neural

Auto-diff.
Field Solver

T
(z,y)

Code designed for versatility and scale
(One of the key value propositions of DFlat):

Manage large collection of meta-atom datasets
- Every shape type, material, block size, requires a new pre-computed dataset

- Query a dataset by name and automatically download it from server
- Datasets have a standard form (class) speeding up integration to ML pipeline
- Integrated field solver to generate new datasets

Manage large collection of pretrained neural networks
- MLPs will have different input-output dimensions (for different meta-atoms)
- Different architectures (ex. number layers, attention, etc.)
- Different pre-processing steps and normalization terms (min/max shapes)

- Pre-trained models called by name and model weights/configuration files are
downloaded from server

- Models are assembled on the fly according to the configuration file

- Inherit standardized class/parent so user functionality is the same regardless
of the meta-atom/dataset choice
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Auto-Differentiable Optical Model
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Auto-Differentiable Field Propagation

Optical Model

@ Pre-trained
Neural

(Point-Spread Func.) Image
Field Propagation Rendering
PSF

‘ Fresnel (2D, Radial) ‘

| ASM (20, Radal) |

‘ Discrete Integral ‘

Convolution

Resampling

’ Filtering & Noise ‘

20






Auto-Differentiable Field Propagation

Different numerical implementations of field propagation:

(Point-Spread Func.) Image ) -
Obtical Model Field Pfopagation Rendering * Fresnel Method: x1 Fourier/Hankel transform (approximate)
* Angular Spectral Method: x2 Fourier/Hankel transforms (exact)
_trained : PSF . . : .
8 Pri Uamlf:u. \ Fresnel (2D, Radial) \ %m’v’c“mmm * Discrete Integration: Pixel space transformation (exp., exact)
eura (& ) )
| ASM (20, Radal) | —

Resampling

Desirable implementation involves many steps (method dependent)
- Up-sample user provided profile according to few conditions

- 1 - Zero-padding determines output field discretization (4, z)-dependent

- Resample output field to a pixel size grid if sub-pixel sampling

‘ Discrete Integral ‘

Filtering & Noise

- There are many scenarios where one method is more efficient than the other

Operationin
computational imaging
research that we wanted
to standardized and
provide for others
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Point-Spread Function Optimization

Optical Model

(Point-Spread Func.)
Field Propagation
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Auto-diff.
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‘ Discrete Integral ‘

Convolution
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Filtering & Noise
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Constrained Optimization

(Latent Reparameterization)

Optimize the shapes on a metasurface to produces a simple
multi-focci point-spread function at the sensor plane

- Exists analytic solution for the ideal phase and transmission profile to
produce each focal lobe alone but not obvious how to optimally merge

the many behaviors into one lens.







Task-Specialized Vision: Optical Computing
Replace digital image processing (e.g. edge-detection) with cheaper opto-electronic operations

weighted pixel-wise sum

Z” () (More info)
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demosaic ~_
measurement } "
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Task-Specialized Vision: Optical Computing

Replace digital image processing (e.g. edge-detection) with cheaper opto-electronic operations

demosaic
measurement

weighted pixel-wise sum
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—> First time that opto-electronic processing
this was done in a single snapshot with a

single sensor
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Point-Spread Function Optimization

Dflat Goal: Make the optimization of flat optics as easy as optimizing a deep neural network (code perspective)

- Using pre-trained metasurface models should be as easy as using a pre-trained CLIP or Perceptual Loss
Challenge: Each metasurface model is like a CLIP trained in a different language (different tokenizers, datasets...)

- Modules for point-spread functions/propagations should be as easy as using Conv2D layer
Challenge: Managing large number of branches in code for different approximations and configurations

Additional piece not discussed
as much in this talk:

Image
Rendering

PSF
Convolution

Resampling

Filtering & Noise

[E] 25







D-Flat

(Point-Spread Func.)

Image

Optical Model Field Propagation Rendering
8 Pre-trained Fresnel (2D, Radial) PSF
Neural Convolution
Auto-diff, ASM (2D, Radial) - g
Field Solver Discrete Integral Filtering & Noise
1
I(z,y)

Free and Open Source:

Continuous Integration / Pytest Workflow

Complete docstrings (missing new readthedocs)
Available on Python Package Index (PyPi) as “dflat_opt”
Nightly versions on Github

A lot of open computational projects for all skill levels:
(email @ dhazineh@g.harvard.edu or give it a try)
(Contact Todd Zickler for CS / Federico Capasso on Fabrication)

- Differentiable field solvers

- Large area topology optimization for high-dimensional shapes
- *Memory efficient propagation (bottleneck)

- Co-Optimization with CNNs

- Rendering without shift-invariant PSF assumption

- Gradient checkpointing and other code improvements

(Github)

26
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Auto-Differentiable Field Propagation

Validation of implementations against experiment

Different numerical implementations of field propagation:
*  Fresnel Method: x1 Fourier/Hankel transform (approximate)
*  Angular Spectral Method: x2 Fourier/Hankel transforms (exact)

Sensor Distance:
9.6 mm

20
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