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Optimization of Metasurfaces 
for Computational Imaging



Conventional Imaging Systems

1940 20202010

1839:             First photographic lens – modern cameras
1550:             Images made w/ concave mirror & lenses
-500 (BC):    Camera Obscura (Pinhole Camera)

Design principle of all conventional cameras is largely the same:
• A single point in the scene should project to a single point on the photosensor
• Captured measurements are undistorted projections of scene, close the final image

2 The design of computational imaging systems deviates from this idea



[1] Effect_of_third-order_aberrations_on_dynamic_accommodation
[2] https://wiley-vch.e-bookshelf.de/products/reading-epub/product-id/5030654/title/Optical

Centuries pursuit of the Ideal Lens

 Moving away from ideal focusing to structured point-spread functions enable better vision systems and cameras
 How we engineer the point-spread function for computational imaging with a new type of lens, metasurfaces

3

Sc
al

e 
of

 A
be

rra
tio

n

https://www.researchgate.net/publication/6523438_Effect_of_third-order_aberrations_on_dynamic_accommodation
https://wiley-vch.e-bookshelf.de/products/reading-epub/product-id/5030654/title/Optical


4
PS

F 
vs

 o
bj

ec
t d

is
ta

nc
e 

 

Biological vision: Depth from Defocus

Qi Guo et al., Compact single-shot metalens depth sensors inspired by eyes of jumping spiders, 2019 PNAS 116 (46) 22959-22965



Features of a Scene: Depth, Spectral Radiance, Polarization

[3] Hyperspectral Depth Dataset From: https://vclab.kaist.ac.kr/iccv2021/dataset.html
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[3] Hyperspectral Depth Dataset From: https://vclab.kaist.ac.kr/iccv2021/dataset.html
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Features of a Scene: Depth, Spectral Radiance, Polarization






(exemplary) 
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Features of a Scene: Depth, Spectral Radiance, Polarization

All three features of a scene can in principle be measured in a single snapshot then reconstructed with computational 
imaging, if they are optically encoded with a specialized lens (feature-dependent point-spread function)



Computational Imaging and Sensing

- Material ID/Classification              - Segmentation              
- Depth (3D modeling)                        - Scientific sensing (wavefront phase, angle of incidence…)

• How can we recover the full information of a scene (or best encode the quantities in the measurement)
• Why: We require more than just a 2D spatial map of a scene (ideal image) to interact with the world (e.g. AR/VR) 

Render MeasurementScene Algorithm Output

Optical Engineering Computer Vision

Loss ∑ Output − Feature 2 

Gradients

Lens 
parameters 

Model 
parameters

- Seg. Mask
- Depth
- Spectral
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Computational Imaging and Sensing

- Material ID/Classification              - Segmentation              
- Depth (3D modeling)                        - Scientific sensing (wavefront phase, angle of incidence…)

Render

Lens 
parameters 

MeasurementScene

Model 
parameters

Algorithm Output

- Seg. Mask
- Depth
- Spectral

Loss ∑ Output − Feature 2 

Gradients

End-to-End Optimization
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• How can we recover the full information of a scene (or best encode the quantities in the measurement)
• Why: We require more than just a 2D spatial map of a scene (ideal image) to interact with the world (e.g. AR/VR) 

Render
Open-source software (Tensorflow & Pytorch)
Auto-differentiable framework specially geared to co-
optimization of flat optics with post-processing networks

D-Flat: A Differentiable Flat-Optics Framework for End-to-End Metasurface Visual Sensor Design, D. Hazineh et al, 2022

Lens 
parameters 



Metasurfaces (Metalens)

Metalenses can transform and structure incident light in ways that other devices cannot!
• Polarization, depth, and wavelength dependent point-spread functions

(Left) Photo E. Tseng et al., Neural Nano-Optics for High-quality Thin Lens Imaging
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Metasurfaces (Metalens)

600 nm

2 um

6 um

50 um

Metalenses can be millimeters to 
centimeter scale in diameter but must be 
modeled at a subwavelength scale (~300 
nanometers)
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Photo: M. Khorasaninejad et al. (Capasso Group)
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Metasurface Design Theory
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Metasurface Design Theory

 (approximation) Meta-atom as building blocks 
 Build dataset by sweeping & solving Maxwell’s Equations 
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Auto-Differentiable Optical Model
1. Auto-differentiable field solver (RCWA, FDFD)
2. Neural Representation

MLP requires a factor of at least x105 
fewer FLOPS per cell evaluation
vs our auto-differentiable field solver
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Auto-Differentiable Optical Model
1. Auto-differentiable field solver (RCWA, FDFD)
2. Neural Representation

MLP requires a factor of at least x105 
fewer FLOPS per cell evaluation
vs our auto-differentiable field solver
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Auto-Differentiable Optical Model

Render

Lens 
parameters 

MeasurementScene
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Auto-Differentiable Optical Model

Code designed for versatility and scale 
(One of the key value propositions of DFlat):

• Manage large collection of meta-atom datasets
- Every shape type, material, block size, requires a new pre-computed dataset
 Query a dataset by name and automatically download it from server
 Datasets have a standard form (class) speeding up integration to ML pipeline
 Integrated field solver to generate new datasets
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Auto-Differentiable Optical Model

Code designed for versatility and scale 
(One of the key value propositions of DFlat):

• Manage large collection of meta-atom datasets
- Every shape type, material, block size, requires a new pre-computed dataset
 Query a dataset by name and automatically download it from server
 Datasets have a standard form (class) speeding up integration to ML pipeline
 Integrated field solver to generate new datasets

• Manage large collection of pretrained neural networks
- MLPs will have different input-output dimensions (for different meta-atoms)
- Different architectures (ex. number layers, attention, etc.)
- Different pre-processing steps and normalization terms (min/max shapes)
 Pre-trained models called by name and model weights/configuration files are 

downloaded from server
 Models are assembled on the fly according to the configuration file
 Inherit standardized class/parent so user functionality is the same regardless 

of the meta-atom/dataset choice



19

Auto-Differentiable Optical Model
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Auto-Differentiable Field Propagation
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Auto-Differentiable Field Propagation

Different numerical implementations of field propagation:
• Fresnel Method: x1 Fourier/Hankel transform (approximate)
• Angular Spectral Method: x2 Fourier/Hankel transforms (exact)
• Discrete Integration: Pixel space transformation (exp., exact) 

Desirable implementation involves many steps (method dependent)
- Up-sample user provided profile according to few conditions
- Zero-padding determines output field discretization (𝜆𝜆, 𝑧𝑧)-dependent
- Resample output field to a pixel size grid if sub-pixel sampling

 There are many scenarios where one method is more efficient than the other

Operation in 
computational imaging 
research that we wanted 
to standardized and 
provide for others






600 nm6 um

50 um
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Point-Spread Function Optimization

Optimize the shapes on a metasurface to produces a simple 
multi-focci point-spread function at the sensor plane

 Exists analytic solution for the ideal phase and transmission profile to 
produce each focal lobe alone but not obvious how to optimally merge 
the many behaviors into one lens. 
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Task-Specialized Vision: Optical Computing

Replace digital image processing (e.g. edge-detection) with cheaper opto-electronic operations 

(More info)
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Task-Specialized Vision: Optical Computing

Steerable gaussian derivative by changing the 
digital summation weights

 First time that opto-electronic processing 
this was done in a single snapshot with a 
single sensor

Replace digital image processing (e.g. edge-detection) with cheaper opto-electronic operations 

(More info)
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Point-Spread Function Optimization

Dflat Goal: Make the optimization of flat optics as easy as optimizing a deep neural network (code perspective)
 Using pre-trained metasurface models should be as easy as using a pre-trained CLIP or Perceptual Loss

Challenge: Each metasurface model is like a CLIP trained in a different language (different tokenizers, datasets…)

 Modules for point-spread functions/propagations should be as easy as using Conv2D layer 
Challenge: Managing large number of branches in code for different approximations and configurations

Additional piece not discussed 
as much in this talk:
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Free and Open Source:
• Continuous Integration / Pytest Workflow
• Complete docstrings (missing new readthedocs)
• Available on Python Package Index (PyPi) as “dflat_opt”
• Nightly versions on Github

A lot of open computational projects for all skill levels:
(email @ dhazineh@g.harvard.edu or give it a try)
(Contact Todd Zickler for CS / Federico Capasso on Fabrication)

- Differentiable field solvers
- Large area topology optimization for high-dimensional shapes
- *Memory efficient propagation (bottleneck)
- Co-Optimization with CNNs
- Rendering without shift-invariant PSF assumption
- Gradient checkpointing and other code improvements 

(Github)

mailto:dhazineh@g.harvard.edu


Extra 
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Different numerical implementations of field propagation:
• Fresnel Method: x1 Fourier/Hankel transform (approximate)
• Angular Spectral Method: x2 Fourier/Hankel transforms (exact)

600 nm

2 um

6 um

50 um
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Auto-Differentiable Field Propagation
Validation of implementations against experiment

Experimental data from Dr. Daniel Lim, Capasso Group
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