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Optical metasurfaces are planar substrates with custom-designed, nanoscale

features that selectively modulate incident light with respect to direction,

wavelength, and polarization. When coupled with photodetectors and appro-

priate post-capture processing, they provide a means to create computational

imagers and sensors that are exceptionally small and have distinctive capa-

bilities. We introduce D-Flat (D♭), a framework in TensorFlow that renders

physically-accurate images induced by metasurface optical systems. This

framework is fully dierentiable with respect to metasurface shape and

post-capture computational parameters and allows simultaneous optimiza-

tion with respect to almost any measure of sensor performance. D♭ enables

simulation of millimeter to centimeter diameter metasurfaces on commodity

computers, and it is modular in the sense of accommodating a variety of

wave optics models for scattering at the metasurface and for propagation to

photosensors. We validate D♭ against symbolic calculations and previous ex-

perimental measurements, and we provide simulations that demonstrate its

ability to discover novel computational sensor designs for two applications:

single-shot depth sensing and single-shot spatial frequency ltering.

CCS Concepts: • Hardware → Emerging optical and photonic tech-

nologies; Emerging tools and methodologies.

Additional Key Words and Phrases: metasurface, d-at, end-to-end, multi-

layer perceptron, co-design

1 INTRODUCTION

Metasurfaces are a class of recently-matured, nanophotonic devices

that consist of sub-wavelength scale structures patterned onto a pla-

nar transparent substrate. They have gained signicant attention for

their small size and their ability to enable custom multi-functionality,

with optical properties beyond those attainable by bulk material.

Unlike refractive and diractive optical elements, whose dispersion

and birefringence are xed upon the choice of material, the wave-

length and polarization response of metasurfaces can be customized

based on the local nanoscale shapes. Moreover, by cooperatively

interleaving dierent nanoscale structures across a metasurface

plane, one can simultaneously induce multiple behaviors that are

distinct in their spatial location, spectral selectivity, and/or polar-

ization composition. For example, Figure 1a depicts a metasurface

focusing dierent polarization components of an incident wave to

dierent focal lengths, creating two distinct images that may be

captured simultaneously by a polarization-mosaicked photosensor.
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Fig. 1. The metasurface plane is partitioned into sub-wavelength scale

cells with independent shapes. The cells are approximated as being opti-

cally non-interacting. Common cell-shape dictionaries include (b) radius-

parameterized nanocylinders and (c) width-parameterized nanofins. A typi-

cal width of a cell is around 300 nm for operation in visible light. Asymmet-

ric cell-shapes like nanofins allow polarization control and can be designed

across the plane to cooperatively induce two distinct images on orthog-

onal, linear polarization states (↔ and ↕ in (a)), which may be captured

simultaneously by a polarization-mosaicked photosensor.

By co-designing metasurface shapes and post-capture processing

algorithms, researchers have recently demonstrated several small

imagers (e.g., [Huang et al. 2022; Tseng et al. 2021]) as well as a

variety of “single-shot” computational sensors that can measure

depth [Tseng et al. 2021], polarization [Lin et al. 2021b; Rubin et al.

2019] or hyperspectral information [Lin et al. 2021a] in exceptionally

small form factors and without having to capture multiple exposures

over time.

In order to accelerate the pace of research in metasurface visual

sensing, we present D-Flat (D♭), an open-source TensorFlow frame-

work for the simultaneous optimization of metasurface shape and

post-capture processing algorithms. D♭ is computationally ecient.

It enables gradient-based, end-to-end optimization of one or more

millimeter to centimeter diameter metasurfaces together with the

post-capture processing parameters of a convolutional neural net-

work (CNN) or any other dierentiable computation. D♭ is designed
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to enable fast experimentation. Dierent computational-sensing

models and architectures can be assembled quickly and easily us-

ing minimal code. We demonstrate in this paper the inverse-design

of two distinct metasurface imaging systems optimized with dif-

ferent objectives. Lastly, D♭ is designed to be modular, providing

developers with the ability to include future implementations of

metasurface design and post-capture processing algorithms.

To enable the inverse design of large-area metasurfaces, D♭ lever-

ages a standard, cell-based approach [Yu et al. 2011]: It partitions the

metasurface into sub-wavelength cells of equal size, evaluates the

optical response of the nanoscale shape in each cell independently,

and then jointly propagates the eld of per-cell responses to the

photosensor or other imaging planes. This approach is an approxi-

mation that circumvents the computational intractability of solving

directly for the electromagnetic eld (with nanometer resolution)

across the entire millimeter-scale metasurface1. Previous reports

have shown that it is suciently accurate when neighboring cells

contain similar types of structures (e.g. nanocylinders or nanons as

depicted in Figure 1b-c) [Khorasaninejad et al. 2016; Pestourie et al.

2018]. In this way, the task of designing a metasurface becomes that

of designing the nanostructures of each cell, treating each cell as

a modular component, and spatially arranging the cells to achieve

the desired modulation of the entire incident eld.

D♭ currently supports two types of dierentiable models to eval-

uate the optical response of each cell. These two approaches are

complementary and are well suited for dierent design tasks or tar-

get metasurface sizes. First, it incorporates the auto-dierentiable

implementation of rigorous coupled-wave analysis (RCWA)2 pub-

lished by Colburn and Majumdar [Colburn and Majumdar 2021].

RCWA directly solves for the optical response of each cell under the

locally periodic assumption by computing numerical solutions to

Maxwell’s equations. While its computational cost is high compared

to the following approximate model, this method enables the design

of complicated cell nanostructures.

As an alternative to RCWA, we propose and demonstrate in this

work an approximate, neural optical model which learns the map-

ping between the nanostructures of each cell and its optical response

using a multi-layer perceptron (MLP). The neural optical model is as

accurate as but more computationally ecient than the numerical

solvers of Maxwell’s equations, when the shape of the nanostruc-

tures in each cell is simple and can be parameterized using a low

dimensional vector. We demonstrate that neural optical models can

precisely localize the optical resonance caused by certain nanos-

tructures while costing orders of magnitude fewer oating point

operations (FLOPs) per cell than numerical solvers of Maxwell’s

equations. In this work, we also compare the usage of the MLP to al-

ternate, dierentiable models including elliptic radial basis function

networks (ERBFs) and multi-variate polynomial regressions [Tseng

et al. 2021].

Along with this paper, we present the framework as a validated,

maintained open-source software accessible at https://tinyurl.com/

1Recent domain decomposition methods achieved full-area eld simulations but only
for micron-diameter devices [Lin and Johnson 2019].
2The theory of RCWA was originally introduced for nanophotonics by Lalanne and
Silberstein [Lalanne and Silberstein 2000]

Fig. 2. The D♭ architecture consists of four basic stages and supports mul-

tiple implementations for each (see Section 2 for details). Each stage can

be individually loaded as a modular, dierentiable layer and layers can be

chained together to simulate arbitrary imaging systems, including those

incorporating multiple, cascaded metasurfaces. The aim of D♭ is to pro-

vide a validated, comprehensive back-end to the metasurface, propagation,

and rendering model so users may focus on experimenting with their own

custom, post-capture processing and loss algorithms. Gradients can be

back-propagated to train parameters in any layer.

DFlatRepo. We have included libraries of pre-trained neural opti-

cal models for common cell-shape families along with the optical

response datasets to facilitate further investigations into implicit

representations of optics.

2 FRAMEWORK

D♭ enables the user to dierentiably render the image of a scene

that is induced by one or more metasurfaces and measured by a

photosensor. This is done through multiple, feed-forward computa-

tional layers as depicted in Figure 2. First, it computes the complex

modulation imparted by each metasurface cell onto a local portion

of the incident wavefront (section 2.1). It then jointly propagates

the entire modulated eld to the photosensor (section 2.2).

Three-dimensional scenes S are represented as sets of point-

sources that cover the surfaces within the optic’s eld of view and

reect/emit light toward the system. The reection/emission spec-

trum for each point-source may be explicitly dened with respect

to wavelength and polarization. The image of the scene as cap-

tured on the photosensor can then be computed by evaluating and

appropriately summing the optical system’s response to each of

the scene’s sources. For 3D scenes comprised of textured, slanted

planes at dierent depths, we incorporate an accelerated renderer

that replaces the summation over point sources by approximate,

piece-wise 2D convolutions of textured layers with the system’s

point-spread functions, as introduced by Guo et al. [Guo et al. 2019]

(Section 2.3).

Lastly, the rendered images may be passed to post-capture pro-

cessing algorithms with trainable, computational parameters Ψ to

produce an output  . Given examples of scenes S and the desired

sensor-outputs, {S ;, }=1,..., , D♭ enables the supervised co-

optimization of the metasurface parameters Π (e.g., geometrical

dimensions of nanostructures) alongside the computational param-

eters Ψ for dierent sensing tasks by solving the minimization

problem,

argmin
Π,Ψ

∑



L

 (S ;Π,Ψ),,


. (1)
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Here, L is a loss function to be minimized and measures the dier-

ence between the obtained output and the desired output. Examples

of computational parameters Ψ and optimization demonstrations

with D♭ are provided in Section 4.

2.1 Metasurface Cell Models

At the heart of the proposed framework and one particular dis-

tinction which sets it apart from other diractive simulators is a

dierentiable treatment of the metasurface optical response. We

dene a metasurface Π as a collection of cells on a regular grid of

points  at the metasurface plane. The nanostructures in each cell

are then dened using a set of shape parameters  :

Π = { ( ′,′) | ( ′,′) ∈ },

 ( ′,′) = (1, 2, ...,  , ...,  ) ∈ R

,

(2)

where  is the dimensionality of the given nanostructure type. As

an example, single nanocylinders placed at the center of each cell

(Figure 1b) are parameterized by the cylinder radius  with  = 1,

nanons (Figure 1c) by the nwidths and with = 2, and the

set of four ellipses (Figure 10b) by the set of four major and minor

axes lengths with  = 8. In the limit of free-form nanostructures, 

becomes particularly large as the parameters  may correspond to

the binary inclusion of a dielectric at each point within the cell.

An optical model : R → C prescribes the mapping between

the cell parameters  and its optical response in terms of a local

transmittance  and phase-delay  imparted to an incident wave-

front:



 ( ′,′),Θ


= ( ′,′) exp


−  ( ′,′)


, (3)

where Θ represents the state of the incident light dened by di-

rection, wavelength , and polarization. The functionality of the

assembledmetasurface can then be dened by applying this complex

modulation to the eld incident at each cell

 ( ′,′, 0+,Θ) =  ( ( ′,′),Θ) ( ′,′, 0−,Θ), (4)

where 0− and 0+ represents the plane immediately before and after

the optics, respectively.

Equation 4 is a statement of linear optics, while Equation 3 is

specic to metasurfaces. Unlike with conventional diractive optical

elements (DOEs), the cell size considered is suciently small relative

to the operating wavelengths so that there is no energy in higher-

order diraction channels other than the zeroth order; as a result,

only a single pair of transmission and phase values per stateΘ needs

to be modeled in the output [Yu et al. 2011]. Moreover, as many

structures have an optical response that varies weakly with incident

angle, we may presume normal incidence. The optical model can be

readily generalized to account for scenarios where either assumption

is not valid, such as in non-local metasurfaces with a tilt-dependent

response [Kwon et al. 2018].

In order to optimize the metasurface under the constraint of mod-

ulation functions that are achievable by realistic nanostructures,

the modulation function in Equation 3 must be dierentiable with

respect to the shape parameters  . Notably, there is no simple ana-

lytic relation for the optical mapping that may be derived from

rst principles which is valid for general nanostructures.

2.1.1 Physical Optical Model. Physical models determine the gradi-

ents of the mapping in Equation 3 by solving Maxwell’s equations

directly, for a given cell. While there exists many methods (and

many open source packages) for solving the eld equations, in-

cluding nite-dierence (FDFD, FDTD) and nite-element (FEM)

methods [Jarem and Banerjee 2016], rigorous coupled-wave analysis

(RCWA) [Liu and Fan 2012] is largely the standard choice in meta-

optics design owing to its computational eciency, particularly for

small cell sizes and high aspect ratio nanostructures. This approach

avoids iterative solvers and Krylov methods by formulating the

scattering problem as an eigenequation.

Given the ability to solve the forward equation, gradients in

the reverse direction are typically obtained by the adjoint method

[Johnson 2007; Miller 2013]. The adjoint method yields directly

an analytical solution to the gradients of the eld with respect to

dielectric inclusions at each point in the cell. Notably, we instead

desire the gradients with respect to the shape parameters  . While

this can be done using the adjoint method, it requires the user to

manually implement additional, shape-dependent derivations each

time a new nanostructure type is introduced. Alternatively, this

burden on users of the framework can be side-stepped entirely

by employing an auto-dierentiable (AD) eld solver. Automatic

dierentiation stores the mathematical operations performed in a

calculation so that the analytical chain rule for dierentiation can

be eciently performed to yield the exact numerical gradients.

In recent years, there have been numerous AD eld packages

published. We modify and port the Tensorow RCWA implemen-

tation [Colburn and Majumdar 2021] into D♭. Technical details are

deferred to the original work. In physical models, each cell must be

individually discretized into a Cartesian grid to be numerically eval-

uated. Consequently, the required memory scales non-linearly with

the resolution of the grid, and the computational cost for evaluating

the mapping is generally found to be orders of magnitude greater

than that of the neural optical model. For this reason, coupling a

physical model for the optical layer with complex algorithms, like

deep neural networks, is challenging. Alternatively, the computa-

tional cost is largely invariant to the value of  and requires no

pre-evaluated training data.

2.1.2 Neural Optical Model. The neural optical model is more e-

cient in inference than physical models and is similarly accurate. It

uses trained MLPs to approximate Equation 3:

 (,Θ) ≈ MLP(,Θ). (5)

The MLP takes the cell parameters and the light state as an input

and outputs the predicted transmittance and phase delay imparted

by the cell. Given supervised training data { ; (,Θ)}=1,..., pre-

generated by physical eld solvers, we minimize the squared loss

function to train the neural optical model via stochastic gradient

descent:

argmin


∑



∑

Θ

( (,Θ) −MLP(,Θ;))2 , (6)

where are the parameters of the MLP.

While D♭ includes a compatible physical model (a Fourier-based

method) to generate the training data, it is benecial in some cases

to utilize an ecient nite-dierence time-domain (FDTD) solver
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instead [Gedney 2011]. Time-domain methods allow one to evaluate

the optical response for many incident wavelength states with a

single simulation by Fourier transformation of the time-domain eld

behavior. In contrast, frequency space methods require an additional

simulation for each wavelength probed, although they are more

ecient. For this work, we utilize the commercial FDTD software by

Ansys Lumerical Inc., to generate several nely-sampled broadband

datasets for training.

The neural optical model serves as a dierentiable proxy to the

physical model, with substantially lower computational andmemory

cost per query. As a consequence, this representation enables the

optimization of large, 2D metasurfaces in conjunction with complex

algorithms–the limitation being the need to pre-generate training

data. It is important to recognize, however, that the training data

need not densely or uniformly sample all instantiations of  due to

the generalization power of MLPs. For large  , e.g., multiple ns

placed in a single cell with each having several degrees of freedom,

it is possible to consider an adaptive learning method where the

neural optical model queries the physical model for the labelled data

that will best improve the models accuracy.

2.1.3 Shape Constraints. For both the physical model and the neu-

ral optical model, one must impose constraints when optimizing

the shape parameters  . While obtaining gradients with respect to

the shape parameters rather than dielectric inclusions inherently

ensures that only generally fabricable shapes are designed, we still

require bounds on these degrees of freedom to ensure meaningful di-

mensions (e.g. structure widths that are positive and smaller than the

cell size or separation distances consistent to fabrication tolerances).

For the parameterizations discussed in this work, these bounds

take the form of simple inequality constraints on the minimum

and maximum dimensions,  ≤  ≤  . To enforce these, we uti-

lize a parameter-transformation method alongside standard uncon-

strained optimization. Specically, for each cell, we back-propagate

gradients to a latent parameter  ∈ Rwhich is dierentiably related

to the shape parameters by the analytic transformation,

 =  + ( −  )
tanh( ) + 1

2
,  ∈  (7)

For more complicated and general constraints, this technique may

still be used but with an alternate construction of the transformation

function, potentially a pre-trained generator network or a set of

nested functions.

2.2 Propagation Models

Given the complex eld after the optics, e.g. after applying Equation

4, the propagation of the eld in free space is prescribed fully by the

theory of Fourier optics. In this section, the theory is reviewed with

focus on the particular implementations included in D♭. In sum-

mary, D♭ incorporates four dierent propagation models for scalar

elds which provide trade-os between generality and eciency.

In addition to the full scalar diraction model, it includes ecient

propagators for metasurfaces with radial symmetry (e.g., metal-

enses) and for cases where the distance between the metasurface

and photosensor is relatively large (i.e., paraxial propagation).

As in Figure 1a, the wavefront after the metasurface propagates

towards the photosensor placed a distance  after the lens. The eld

at the new plane,  (,, ), can be computed by evaluating the rst

Rayleigh-Sommereld solution of diraction [Goodman 2017]:

 (,, ) =

∬

 ′,′
 ( ′,′, 0+)ℎ( −  ′, − ′, ) ′′. (8)

The full transfer function ℎ(,, ) is the impulse response function

for free space propagation:

ℎ(,, ) =
1




1


− 

 


 exp (  )


,

where  =

√
2 + 2 + 2,  =

2


.

(9)

If  ≫ , as is often the case in computational imaging, a binomial

approximation (the Fresnel approximation) can be introduced and

the impulse response function can be simplied:

ℎ(,, ) =
exp ( )


exp




2
(2 + 2)


. (10)

This approximation enables a more computationally ecient form

for Equation 8 when substituted:

 (,, ) =
exp ( )


exp




2
(2 + 2)


×

F


 ( ′,′, 0+) exp




2
( ′2 + ′2)



′=

 ,′=




(11)

which is referred to as the Fresnel diraction integral. In this approach

only, the output grid diers from the input grid unless zero-padding

of the initial eld is used. This padding is handled internally in

D♭ to return elds on a user-specied grid. Evaluation of the dirac-

tion equation can then be done utilizing a single Fourier transform

operation.

Notably, another computationally ecient form of Equation 8

can be given which provides an exact treatment for the impulse

response function. In some cases, it is also more memory ecient

than Equation 11, as the input and output grids are the same with-

out need for padding. In the frequency domain, Equation 8 can be

reformulated as:

 ( ,, ) =  ( ,, 0
+) ( ,, ), (12)

where  denotes the Fourier transform of  and  is the Fourier

transform of the full ℎ [Sherman 1967]:

 ( ,, ) = exp




√
2 − 2 − 2


. (13)

The propagated eld can then be numerically evaluated via:

 (,, ) = F −1 F

 (,, 0+)


 ( ,, )


, (14)

where F −1 (·) indicates the inverse Fourier transformation. Equa-

tion 14 is referred to as the angular spectrum method (ASM).

To achieve acceptable accuracy with either propagation method,

careful attention must be paid to the spatial sampling that is used

in the discrete Fourier transforms. In particular, the initial eld

after the metasurface  (,, 0+) should be suciently upsampled if

needed to satisfy the Whittaker-Shannon sampling theorem. The

required sampling rate can be deduced directly from the Fourier

bandwidth of ; however, a challenge exists in that there is no

simple, analytic theory to determine this bandwidth for arbitrary
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elds. In general, one would iteratively increase the sampling rate

and evaluate the intensity of the eld relative to the aliasing criteria

(in practice, researchers often use an arbitrary upsample factor based

on inspection). This is not suitable for inverse design where the eld

changes substantially and the computational graph for rendering

should ideally remain xed.

To address this, we introduce an alternative method. In all cases,

we instead consider the Fourier-bandwidth of a quadratic phase ex-

ponential bounded by the same eld aperture as . This bandwidth

condition emerges naturally when the metasurface imparts an ap-

propriate modulation to focus an incident eld. An analytic relation

for this Fourier bandwidth can then be derived and is dependent on

 and . Consequently, when dealing with multiple wavelengths or

sensor distances, the computational graph is automatically branched

with an appropriate, distinct upsample factor applied in each case.

After the branched calculations are done, D♭ then re-interpolates

each eld back to the user-dened grid. As a note, we nd that

if this condition on sampling were neglected, the predicted elds

computed for the metasurface shown in Figure 6 would be incorrect.

When the wavefront  is radially symmetric, i.e.  (,, ) ≡

 (, ) with  =


2 + 2, the Fourier transforms in Equations 14

and 11 may be replaced with a Hankel TransformH (·) to instead

yield the propagation equations:

 (, ) = H−1 H

 (, 0+)


H (ℎ(, ))


, (15)

 (, ) =
exp ( )


exp




2
2


×

H


 ( ′, 0+) exp




2
 ′2



′=



(16)

For this work, we have introduced an auto-dierentiable, approx-

imate quasi-discrete Hankel transform based on the derivation in

[Guizar-Sicairos and Guitierez-Vega 2004].

D♭ implements the four dierent computations (Equation 11, 14,

15, 16) as auto-dierentiable layers. Similar to the optical models, the

most suitable or ecient choice for the propagator layer depends

on the computational imaging task.

2.3 Accelerated Rendering Model

In this section, we briey review the image formation model and

the approximate rendering approach utilized in this paper. We treat

the scene to be imaged as a collection of point light sources that are

incoherent to each other (e.g., scattering under incoherent illumina-

tion). Without loss of generality, we may assume that the light is of

a single wavelength and polarization, as a similar numerical process

can be repeated to render images of the scene under dierent states.

Consider a scene S where every point is completely visible to

the optics. Given that the transport of intensity is linear, the image

 may be dened as the weighted summation of the intensity point

spread functions  (PSFs) produced by each point source on the

surface of the scene, i.e. { = ( , ,  ) ∈ S}, such that,

 (,) =
∑



  (,; ), (17)

where  indicates the total energy of light emitted from the point

source  that passes through the metasurface. Specically, the

Fig. 3. A comparison of the image produced by the accelerated renderer

and by the commercial ray-tracing soware, Blender. (a) The pinhole image

of the scene. It consists of a slanted, textured foreground and fronto-parallel,

textured background. The depth map is shown in the inset. (b) The relative

dierence between the rendered image by Blender (c) and by the proposed

approach (d).

PSF  (,; ) is the intensity distribution at the measurement

plane, produced by a spherical wave which originated at the point

( , ,  ) and interacted with the optics. It can be numerically com-

puted using the methods in Section 2.1 and 2.2 via:

 (,; ) = | (,,  ; , ,  ) |
2
, (18)

where  is the distance from the metasurface to the photosensor.

For scenes that consists only of textured 3D planes (e.g. Figure 3a),

we use an approximation to accelerate the rendering. We rst as-

sume that the memory eect holds such that the metasurface dis-

plays translational invariance for PSFs of the same depth. In other

words, a point  = ( , ,  ) produces a PSF equal to that from a

source on-axis at the same depth but spatially shifted:

 (,; ) =  ( − ̃ , − ̃ ; (0, 0,  )), (19)

where ̃ and ̃ are inhomogeneous coordinates of the point  :

̃ = / and ̃ = / . (20)

Furthermore, we assume that the PSFs vary slowly and smoothly

with depth, such that we may calculate PSFs directly at only a few

points   = (0, 0,   ) and approximate the others via linear interpo-

lation:

 (,; ) =
∑





 


 − ̃ , − ̃ ;  


, (21)

where 

 is the interpolation coecient, dependent on the point  .
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The image of a non-occluded scene S can then be approximately

rendered by combining Equation 17 and 21:

 (,) =
∑



∑



 

  ( − ̃ , − ̃ ;   ), (22)

=

∑



 (,)   (,) ∗  (,;  ), (23)

where ∗ denotes a spatial convolution. The interpolation coecient

has been redened via   (̃ , ̃ ) = 

 , and  (̃ , ̃ ) corresponds

to the pinhole image of the scene (an all in-focus, geometrically

magnied image at the photosensor plane). While the linearly inter-

polated PSFs are an approximation to the true PSFs, the accelerated

rendering closely resembles the synthesized result from ray tracing

(see Figure 3).

Lastly, we consider rendering scenes with occlusions, where cer-

tain points in the background are only partially visible to the optics.

We render the depth boundaries using the layered-mask approx-

imation in Guo et al. [Guo et al. 2019]. A scene S is divided into

layers {S ,  = 1, 2, 3, ...}, where points in each layer S are not self-

occluded. The framework then renders an image  (,) of each

layer individually using Equation 23 and the corresponding mask

 (,), an image of the segment with uniform texture, (,) = 1.

The nal image of the scene is synthesized by summing over the

layer images and masks via:

 (,) =
∑



 (,)


 occludes 

(1 − (,)) . (24)

3 VALIDATION

3.1 Optical Model Validation

For the demonstration of the neural optical model, we focus discus-

sion here on the set of cells containing nanocylinders and nanons

(depicted in Figure 1b,c). These two shapes have been two of the

most commonly used nanostructures for designing metasurface-

based imaging systems [Chen et al. 2021; Lin et al. 2021a; Tseng et al.

2021]. Nanocylinders are polarization insensitive, while nanons

are polarization dependent due to their asymmetric shape.

Importantly, for this validation, we desire a cell parameterization

 for which it is feasible to densely sample the parameter space

and evaluate the broadband, ground-truth optical response. Notably,

although the nanons have just two parameters ( = 2), assuming a

xed cell size and n height, generating the dataset for a 350 nmwide

cell utilizing FDTD as discussed in section 2.1.2 involved evaluating

2304 instantiations which took approximately 200 hours of parallel

compute time on a 64-core server CPU. For cell parameterizations

with larger values of  , one would ideally query training data in

a non-uniform, data-driven manner or utilize RCWA and sparsely

sample incident wavelengths.

This FDTD-generated dataset for nanons and the corresponding

output of a trained neural optical model is displayed for several

discrete wavelengths in Figure 4. The model takes in n widths ,

 , and wavelength  and outputs the predicted transmittance  as

well as the sin(·) and cos(·) of the phase delay  for both x and y

polarized light:

{ ,, } → { , sin , cos ,, sin, cos} (25)

Table 1. Performance Per Cell Evaluation for Optical Models. “NO" means

neural optical model, “D1024" indicates there are two hidden, dense layers

with 1024 neurons in each, and “fins/cylinder" represents the type of the

cells. For the RCWA model, (5122, 121) represents a 512 × 512 grid for cells

and 121 Fourier modes.

Optical Model # Parameters FLOPs MAE Test Set3

NO-D128-ns 18 k 37 k 0.035

NO-D256-ns 68 k 139 k 0.025

NO-D512-ns 276 k 540 k 0.021

NO-D1024-ns 1.05 m 2.13 m 0.019

NO-D64-cylinder 5 k 10 k 0.043

NO-D128-cylinder 17 k 36 k 0.024

NO-D256-cylinder 68 k 138 k 0.018

RCWA-(5122, 49) NA 363.27 m 0.062

RCWA-(5122, 81) NA 1.620 b 0.055

RCWA-(5122, 121) NA 5.38 b 0.051

Dealing with the projection of the phase rather than the value

directly is important to correctly handle the discontinuity in phase-

wrapping. The displayed model used for this mapping has two

hidden, dense layers with 1024 neurons in each (hence the name

NO-D1024-ns in Table 1).

For this work, we tested dierent dense architectures to probe

how the number of neurons in each layer aects the accuracy. While

not displayed, we also explored changing the number of hidden

layers; however, we found that two hidden layers provided sucient

accuracy while minimizing the number of trainable parameters. In

Figures 14-15, we show a similar display comparing the FDTD data

against the nanon MLP predictions as the number of neurons in

each of the two hidden layers are reduced. The neural models for the

nanocylinders are treated in the same way as the nanons but with

an input of { , } and an output for just x-polarized light. A display

of the nanocylinder MLP predictions are shown in Figure 16. All

models utilize a leaky ReLU activation function and are trained on

a desktop GPU with a MSE loss (Equation 6) and a standard Adam

optimizer.

Empirically, we nd that all neural optical models considered in

this work are expressive enough to learn the general features of

the optical response, for both nanocylinders ( = 1) and nanons

( = 2). Moreover, some models are able to identify the cells that

experience complex light-matter resonances. The resonances can be

observed as the sharp dips in transmission in Figure 4a. In practice,

it is only important to identify the presence of these resonant cells

(rather than to accurately characterize their optical response), since

one will try to avoid their selection when designing metasurfaces

to improve robustness to fabrication non-idealities.

The accuracy of the neural optical model depends on the number

of trainable weights in the MLP and the dimensionality  of the

cells. While the method to query training data also has substantial

inuence, we consider only the case of uniform sampling of the

cell’s parameter space. To quantify the accuracy, we utilize as a

metric the mean absolute error (MAE) of the complex modulation,

3For RCWA, the MAE relative to FDTD is computed over cell transmission values
only. The phase may have a global, constant oset without loss of accuracy. Due to
computational limitations, the MAE is taken over a reduced sized set from the test cells.
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Fig. 4. (Neural model: NO-D1024-fins) MLP-predicted transmission (a) and phase (b) imparted by a nanofin on a 350 nm cell for incident light linearly

polarized along x and y. Inputs to the MLP are wavelength  and the nanofin widths  and  (as depicted in Figure 1c). The results are compared to the

FDTD simulated dataset, which was generated by sweeping widths between 60 and 300 nm with a 5 nm step size and for wavelengths between 310 and 750

nm with a 1 nm step size. The MLP results are displayed for a grid of nanofin widths upsampled at 4x the resolution of the FDTD dataset.

taken over the testing set (cells which were not shown during train-

ing). The MAE for dierent models are listed in Table 1, and we

note that changes in this metric are found to be well correlated

to the visual changes in accuracy that one can observe in Figures

14-16. As a benchmark, we also prole the auto-dierentiable RCWA

implementation included in D♭. For the RCWA calculations, cells

are discretized into a 512 x 512 Cartesian grid, the structure is as-

sembled, and the electromagnetic elds are directly solved for. The

accuracy of this calculation is set by the number of Fourier harmon-

ics, and we consider 49, 81, and 121 modes (Table 1). In practice, 121

modes are often used to obtain converged results. Evaluating the

optical response of each cell by this method takes approximately

5e9 oating point operations (FLOPs).

In contrast, we note that the smallest nanon model displayed

(two hidden dense layers of 128 neurons) correctly predicts the gen-

eral features of the optical response with disagreement localized

around only some of the resonant cells. In this case, the model re-

quires a factor of approximately 105 times fewer FLOPs to evaluate

the optical response of the cell as compared to the RCWA physical

model. We nd that the NO-D512-ns model (two hidden layers of

512 neurons) presents a nice balance between accuracy and com-

putational cost. In summary, there is a trade-o between accuracy

and computational advantage for the neural models and further

optimizing this interplay for higher dimensional shapes is a topic

of future investigation.

3.1.1 Alternative Implicit Representations. As potential alternatives

to the proposed neural optical model, we also consider and test the

usage of other implicit representations to dierentiably approximate

the optical response of cells. Specically, we evaluate the perfor-

mance of a multivariate polynomial model, as introduced recently

for metasurface end-to-end design by Tseng et al. ([Tseng et al.

2021]), and the performance of standard elliptic radial basis function

networks (ERBFNs). To the best of our knowledge, the latter has

not previously been applied in the context of this problem.

The multivariate polynomial approach formulates the optical

model in a linear, matrix form; the shape parameters and the inci-

dent wavelength are used as feature inputs and a coecient matrix

for each output is tted to the FDTD data by the method of least

squares. We consider dierent values for the maximum polynomial

degree. The ERBFN is similar to the MLP approach in that both are

a class of feed-forward neural networks with dense connections;

however, the ERBFN instead utilizes a single hidden layer of neu-

rons with an elliptic Gaussian activation function4 [Dash et al. 2016;

4Formally, they also dier in that the ERBFN computes a Euclidean distance between
inputs and weights while the standard MLP architecture utilizes dot products
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Fig. 5. The median absolute error of cells’ complex optical response is evalu-

ated for eachmodel. The interquartile range is displayed for the nanocylinder

test set (le) and the nanofin test set (right). Dierent FLOPs for cell evalu-

ations are obtained by changing the maximum order for the multivariate

polynomial model and the number of neurons in the hidden layer(s) for the

ERBFN and the MLP model.

Kononenko and Kukar 2007]. The center coordinate and the standard

deviations for the radial Gaussian activation function of each neuron

is a learnable parameter that can be optimized via gradient descent,

alongside the weights and bias of the dense connections to the out-

put layer. The number of neurons (and consequently the number of

radial basis functions used to represent the high-dimensional data)

is a free-parameter. The predicted optical response generated by a

representative polynomial model and ERBFN after tting/training

is displayed in Figure 14b for the nanon cells and in Figure 16b for

the nanocylinders. In Figure 5, we display the interquartile range

of model errors and the corresponding computational cost of cell

evaluation for ERBFNs of dierent size and for polynomial models

of dierent order, with details provided in Table 2.

For both types of cells considered in this paper, the polynomial

model presents relatively large error in predicting the transmittance

and phase. In the case of nanocylinders, the model begins to overt

with increasing polynomial order before converging to an accuracy

comparable with RCWA. For nanons, the large size of the training

data and the higher dimensional input/output limited the maximum

polynomial order that can be tted by standard (non-iterative) re-

gression methods to 15. In this case, the model is unable to localize

any resonant cells and can only describe the general, low spatial

frequency structures in the data.

In contrast, we nd that the ERBFNs achieve comparable accu-

racy to the MLPs and present another reasonable approach for low

dimensional cells shapes (i.e.,  = 1, 2). For both nanocylinders and

nanons, the range of model errors when evaluating on the test set

are similar, although the ERBFN has reduced computational cost

for the nanocylinder cells relative to the MLP. On the other hand,

we observe that the MLP can achieve better accuracy in identifying

high spatial frequency features in the data which enables the MLP

to predict resonant cells where the ERBFN fails (see ERBF-2048 in

Figure 14b as compared to Dense-512 in Figure 14a as an example).

While there are numerous variations to this study that could be

done, e.g., tweaks to the ERBFN architecture, hyper-parameter tun-

ing, or batched training for the polynomial regression, we highlight

that the goal of the implicit representation here is not to absolutely

minimize computation but to instead achieve a balance of computa-

tional cost, accuracy, and generality relative to auto-dierentiable

eld solvers. While ERBFNs unsurprisingly perform well for these

two shape families, the accuracy of this neural architecture requires

having a number of hidden nodes roughly similar to the permuta-

tions of the input space, e.g., the curse of dimensionality [Alpaydin

2014]. The neural optical models, however, perform well for both

cases examined and are known to generalize better as the dimen-

sionality increases for more complicated cell structures. Moreover,

recent work on Fourier feature mapping by Tancik et al. [Tancik

et al. 2020] further suggests a route for improvements when using

the more general, deep MLP architecture.

3.2 Propagation Model Validation

To validate the dierentiable propagators included in D♭, we rst

demonstrate its ability to reproduce in simulation the experimental

elds measured by Lim et al. in [Lim et al. 2021]. There, a metasur-

face was designed that produces a structured, 2D phase singularity

at the sensor plane in the shape of a heart. A phase singularity is

a point (or set of points) in a complex scalar eld where the phase

has a discontinuity making it undened and these points are char-

acterized by zero intensity. They are more commonly found in the

unstructured form of optical speckle [Goodman 2020]. Phase singu-

larities make an ideal test-case for 2D propagation studies due to

their sensitivity to eld perturbations.

A scanning electron microscope (SEM) image of the fabricated

metasurface is shown in Figure 6a. In the leftmost panel (b) of the

same gure, the experimentally measured intensity along with the

reconstructed phase is displayed for the scenario where the meta-

surface is illuminated by a uniform plane wave and the photosensor

is placed a xed distance after the metasurface. Given knowledge

of the metasurface shapes placed in each cell, we may dene the

eld immediately after the metasurface according to Equation 4.

We then propagate this eld and simulate a similar measurement at

the sensor plane utilizing the implemented methods discussed in

section 2.2. Here, we use both the 2D ASM method (Equation 14)

and the 2D Fresnel diraction integral (Equation 11) and display the

computed results in Figure 6b. Additional comparison of the simu-

lated and experimental measurements for dierent sensor distances

are displayed in Figure 17. In all cases, we nd good agreement

between the experiment and the forward simulations.

Alternatively, we also verify all four propagators released in this

work by examining the computed intensity at the sensor plane for

several metasurfaces designed to focus light. The required phase

modulation needed to focus an incident plane wave to a diraction-

limited focal spot a distance  after the metasurface is given by a

hyperbolic phase function [Khorasaninejad et al. 2016]:

 ( ′) =
2




 −

√
 ′2 +  2


. (26)
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Fig. 6. (a) SEM image of the fabricated metasurface from Lim et al. in [Lim

et al. 2021] built from 600 nm tall TiO2 nanocylinders. (b) Le-most panel

displays the experimentally measured intensity and the reconstructed phase

at a sensor 9.8 mm aer the metasurface. Center and right-most panels

display the predicted intensity and phase computed by D♭ for the two

implemented methods.

The resulting intensity distribution at the sensor should then match

that prescribed by the Airy disk:

 () =


21 ()



2
;  =  sin





 2 + 2

,


(27)

where 1 is the Bessel function of the rst kind of order one and 

is the radius of the circular aperture on the metasurface. The results

of this analysis are shown in Figure 18 with additional details in

Appendix B. We nd good agreement between the theoretical Airy

prole and the computed intensity at the sensor for metalenses

with dierent ratios of / and using all four implemented prop-

agators. When the ratio is larger than 0.3 (NA=0.29), the Fresnel

approximation breaks down and as expected, only the ASM method

is accurate.

While the required phase prole for focusing with a metasurface

is known a priori, we can instead combine the auto-dierentiable

optical layer and the propagator layer and probe by inverse design

the metasurface Π that the framework discovers for focusing light

of a single wavelength. Due to memory limitations in utilizing the

physical model as the optical layer for 2D calculations, we inverse

design a radially-symmetric metasurface with the objective function:

argmax
Π

∑

Θ



 ( ′,′, 0−) (Π,Θ)


 ( = 0, = 0). (28)

Fig. 7. (a) The corresponding phase and transmiance imparted to x and

y linearly polarized incident light by an optimized metasurface using the

(top) neural optical model and (boom) the RCWA physical model. (b) A

radial slice of the intensity profile at the sensor plane for the two optimized

metasurfaces along with the theoretic Airy disk profile. Intensity values

correspond to a unity radiance incident plane wave.

 (·) denotes application of the propagator layer, here chosen to

be the radial Fresnel method,  and  denotes coordinates on the

sensor plane, and Θ corresponds to the incident, linear polarization

states. In other words, we seek to maximize the intensity of the

eld measured at the center pixel of a photosensor. The results of

this optimization are displayed in Figure 7. For the metasurface, we

consider the placement of nanon cells and utilize both the RCWA

physical model and the neural optical model. Although not done

here, Θ can be readily expanded to include incident wavelength for

the inverse design of an achromatic focusing metasurface (all the

models introduced in this work are broadband and the propagator

layer calculations are eciently batched over wavelength).

While nanons generally produce polarization sensitive metasur-

faces, the optimization in both cases learns to create a mostly polar-

ization insensitive device by selecting only square nanostructures

(= ). The optimized phase proles imparted by the designed

metasurfaces are found to closely match the theoretic focusing pro-

le in Equation 26 (Figure 7a). Moreover, although only the intensity

at the central pixel was maximized, the intensity distribution across

the rest of the photosensor is found to converge to the shape of

the analytic Airy disk (Figure 7b), demonstrating that the learning

framework is physically consistent. Almost all energy that is inci-

dent on the metasurface is focused at the photosensor, although

the peak intensity is slightly less than that predicted by the Airy

disk since the transmittance of the placed cells are less than unity.



10 • Dean S. Hazineh, Soon Wei Daniel Lim, Zhujun Shi, Federico Capasso, Todd Zickler, and Qi Guo

The inverse-designed metasurface has a slightly better energy ef-

ciency than that obtained by a metasurface forward-designed to

implement the hyperbolic phase prole by dictionary look-up due

to interpolation.

4 DEMONSTRATION

In this section, we demonstrate via simulation the usage of D♭ to

co-optimize a metasurface Π in conjunction with a post-capture

processing algorithm for two important visual sensing applications,

incoherent opto-electronic image processing and snapshot depth

sensing. Both applications exploit an optical setup similar to that

depicted in Figure 1a.

A multifunctional metasurface produces two, unique PSFs carried

on two orthogonal, linear polarization states (0◦ and 90◦). A linear

polarization-mosaicked photosensor, e.g., the SONY IMX264MZR

photosensor, is then modeled to simultaneously capture the two

images, 0◦ and 90◦ , formed by the optics. For simplicity, we consider

incident light of a single wavelength,  = 532 nm; the simulations

can be readily repeated for the broadband case. The width of each

metasurface cell is chosen to be 350 nm, consistent to the trained

neural optical models discussed in this work. We assume that the

energy of 0◦ and 90◦ polarized light are the same in the incident eld,

which can be enforced in practice by adding a 45◦ linear polarizer

in front of the metasurface. The two rendered images, 0◦ and 90◦ ,

are fed into dierent post-capture processing algorithms depending

on the application. We use D♭ to dierentiably model the optics and

algorithm, and to jointly optimize the metasurface shape and the

algorithmic parameters according to the objective function dened

for each task.

4.1 Single-Shot Incoherent Image Processing

In the optics community, there has been a long and rich history of

designing optical systems for image processing [Lee 1981]. Numer-

ous systems have been proposed and demonstrated for applying

spatial frequency lters on a eld, such that the captured image

corresponds directly to a processed or spatially-dierentiated ren-

dering of the scene without any digital operations required5 [Kwon

et al. 2018; Zhou et al. 2019, 2020]. Notably, these purely optical l-

tering methods all require that the scene is illuminated by coherent

rather than incoherent light. This fundamental restriction can be

understood by considering that an imaging system whose output

is the derivative of the in-focus, incoherent image would require

an intensity PSF with both positive and negative values–a condi-

tion which can not occur. Physically, the restriction is equivalent to

the fact that the removal of signal cannot be achieved optically by

destructive interference with incoherent addition of elds.

To circumvent this limitation, we propose a newmethod based on

extending the opto-electronic theory of two-pupil synthesis [Chavel

and Lowenthal 1976; Lohmann and Rhodes 1977] to metasurfaces.

The theory proposes that the removal of signal required for gen-

eral spatial frequency ltering operations may be done digitally

via the pixel-by-pixel subtraction of two images, captured on two

co-designed optical systems. The benet is a potentially substantial

5A simple example is the classic 4f imaging system where spatial frequency ltering is
done optically by placing a mask at the Fourier plane.

reduction in computational cost for image processing while the

downside in practice stems from diculties with photon noise. By

leveraging the polarization-dependent optical response of the meta-

surface cells, the two required optical systems can be realized with

a single optical component and more over, the two distinct images

can be captured from the same perspective.

The net image which results from the digital subtraction of the

two captured images, 0◦ and 90◦ , may be given via:

0◦ − 90◦ =  ∗ (0◦ −  90◦ ) =  ∗  ′, (29)

where  is an all-in focus, magnied image of the scene, commonly

referred to as a pinhole image. 0◦ and 90◦ are the two PSFs which

form 0◦ and 90◦ . All  ,  , and  are functions of the detector spa-

tial coordinate (,), over which the convolution ∗ is applied. The

coecient  is introduced as a scalar constant that can be digitally

applied and accounts for dierences in total transmitted energy

between the two PSFs. While each intensity PSF produced by the

polarization multiplexed metasurface is individually positive, the

digitally subtracted image corresponds to an eective PSF  ′(,)

which may be positive and negative. In this sense, the digital out-

put of the opto-electronic system can provide a spatially ltered or

dierentiated rendering of the scene for just two FLOPs per pixel.

Moreover, given the checkerboard-mosaicked structure of the linear

polarization lters at the photosensor, the scalar multiplication and

the digital subtraction of the neighboring pixels signal can theo-

retically be done by analog circuitry enabling incoherent image

dierentiation without any digital, post-processing operations for

the rst time.

While  ′ may be correlated directly to convolutional kernels that

one may apply digitally, identifying the optics which realizes a given

 ′ is an inverse-problem that has no simple, analytic solution [Jahns

and Lohmann 1982; Mait 1987; Mait and Rhodes 1989]. Instead, we

use D♭ to learn an optimal metasurface Π and scalar  for dierent

lters and to design the functionality to be depth-invariant over

a reasonable working range. To optimize the system, we require

as an input the labeled data pair (S , ), where S is a series of

fronto-planar scenes at dierent depths and  is the corresponding,

ltered image. The optimization is then done for a single wavelength

by minimizing the L2 loss, starting from the initial condition of a

uniform metasurface:

argmin
Π,

∑



∥ (1 (S ) − 2 (S )) −  ∥
2

 (S ) = render (S , (Π,Θ), ) , Θ ∈ {0◦, 90◦}.

(30)

We utilize this approach to design a metasurface-based opto-

electronic system which produces in the net image a rst-derivative

rendering of the scene. For this example, we utilize a nanon neural

optical model and the 2D Fresnel integral propagator, and design

the 1.5 mm diameter metasurface shown in Figure 8a. The labeled

training data consists of a scene corresponding to the displayed pin-

hole image and its rst derivative along x, obtained by convolution

with the 3x3 Sobel kernel (Figure 8b,c). To enable depth invariant

operation, we use the same labeled pair for three scene distances

between 0.5 and 1.0 m in front of the metasurface. This optimization

is carried out on a single, desktop Quadro RTX 4000 GPU using an
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Fig. 8. A neural optical model, pre-trained for nanofin cells, is coupled

with the propagator and renderer to optimize a metasurface which enables

capture of the first-derivative of a scene. (a) The optimized values for the

nanofin widths  and  for each cell on the metasurface. (b) The pinhole

image is displayed alongside the simulated measured images carried on the

two, orthogonal polarization channels. (c) Digital subtraction of the two

captured images with a learned scalar coeicient  approximates the true,

first-derivative of the scene.

Adam optimizer with a xed learning rate of 1e−3 and took approx-

imately 40 minutes to train. We nd that the net image produced

by the co-designed metasurface matches well with the true rst

derivative (Figure 8c).

The PSFs 0◦ and 90◦ for this optimized metasurface along with

the net PSF  ′ for the opto-electronic system is displayed for a scene

depth of 0.75 m in Figure 9a. Notably, the net PSF learned by the

optimization is antisymmetric with negative values in the left half

and positive values on the right, matching the structure of the Sobel

kernel that was used to generate the labeled data but was otherwise

hidden to the optimizer. This suggests that the learned system can

perform image dierentiation to arbitrary scenes even when trained

on a single example. Moreover, we nd that the net PSF is largely

depth invariant over the trained range (9b,c), facilitating usage in

real-world applications.

The learned functionality can also be better understood by ex-

amining the optical transfer function (OTF) of the system, the

frequency-space analogue of the PSF. A review of the OTF is given

Fig. 9. (a) The PSFs measured on two, orthogonal linear polarization states,

0◦ and 90◦ at the photosensor, which is placed a fixed distance of 5 cm aer

the metasurface. The net PSF  ′ is shown for three object to metasurface

distances in the optimized range.

in Appendix C with the OTF for the system displayed in Figure

19. Here, we nd that the transfer function of the optimized, opto-

electronic systemmatches the denition of the rst derivative (up to

a proportionality constant) for a range of spatial frequencies about

 = 0. Disagreement occurs for high spatial frequency components

and is unavoidable given the nite frequency bandwidth of the op-

tics. This limitation introduces the error seen for the squares in

Figure 8c; however, the accuracy of the operation can be improved

by designing a metasurface with a larger diameter.

Extending from the previous discussion, we also show that the

RCWA physical model may be used as the optical layer to solve a

similar image processing problem but with a higher dimensional

cell parameterization of  = 8. Using the same objective function

of Equation 30 but re-targeted to a labeled training data pair corre-

sponding to a second derivative, we optimize the radially symmetric

metasurface shown in Figure 10a,b. The ground-truth, dierentiated

image is obtained by convolving the pinhole image with the 3x3,

discrete Laplacian kernel. Rather than simple nanons, we consider

the placement of four ellipses in each cell, with each ellipse having

a trainable major and minor axis length. The physical model then

solves Maxwell’s equations at each cell and for each training step

and the auto-dierentiable framework yields the gradients of the

loss with respect to the shape parameters. A standard Adam opti-

mizer with a xed learning rate of 1e−2 is used and the training

takes approximately 40 minutes on the same desktop GPU.

In panel (c), the pinhole image used to train the metasurface

(an image of a binary Siemens star) is displayed alongside the two

photosensor images and the net image produced by the optimized

opto-electronic system. To highlight the generality, panel (d) dis-

plays the simulated results for a test image. In both cases, we again

nd good agreement and observe that the metasurface-based imag-

ing system learns to work in conjunction with the simple algorithm



12 • Dean S. Hazineh, Soon Wei Daniel Lim, Zhujun Shi, Federico Capasso, Todd Zickler, and Qi Guo

Fig. 10. The RCWA physical model is coupled with the radial propagator and

renderer to optimize a metasurface which enables capture of the second-

derivative of a scene. (a) the corresponding phase modulation imparted

by the optimized Π. A dierent phase delay is experienced for 0◦ and 90◦

linearly polarized light. (b) a top-down view of the optimized cells at select

radial locations along the lens. (c) The pinhole image used for training is

shown alongside simulations of the images produced by the metasurface

and captured on the photosensor. The subtraction of the two images is done

digitally post-measurement. (d) same as c, but for an unseen test image.

to produce a dierentiated image suitable for edge-detection. En-

larged images are shown in Figure 20a. In Figure 20b, the optimized

PSFs for the metasurface is displayed, and we observe that the net

PSF  ′ matches the shape of a Laplacian of Gaussian (LoG) ker-

nel. For both optimization scenarios discussed here, we nd that

the framework is able to learn the underlying image lter by only

looking at a single example.

4.2 Single-Shot Depth Sensing

In this section, we leverage the eciency of the proposed neural

optical model to enable the co-optimization of a millimeter scale

metasurface with the parameters of a deep neural network for single-

shot depth sensing. To the best of our knowledge, an optimization

of this type has not been done previously with metasurface-based

optics6. We consider again a computational imaging architecture

based on polarization-multiplexing as discussed in section 4 and

6We note that the co-design of a DOE with similar neural network architectures for
depth sensing has been explored previously in [Ikoma et al. 2021; Wu et al. 2019]

Fig. 11. (a) Schematic depiction of the computational imaging architecture

for single shot depth sensing. A metasurface produces two distinct, optical

responses on two, linear orthogonal polarization states. The two images of

the scene are formed and measured on the polarization mosaicked photo-

sensor pixels. The distance between the metalens and the photosensor is

set to 40 mm. The two images are then passed to a U-net which produces

a depth map of the scene. (b) The U-net architecture used in this work.

Rectangles denote 2D dense convolutional layers with 3x3 kernels, a ReLu

activation function, and channel depth denoted by the overlaid number.

Down arrows between blocks utilize a 2x2 maxpooling while the up arrows

denote 2x2 upsampling.

schematically depicted in Figure 11a. The working principle of this

camera is based on depth-from-defocus (DfD). The metasurface

forms two images, 0◦ and 90◦ , at the photosensor, each with a

distinct depth-dependent blur. The pair of images are then fed into

a U-net which outputs a depth map of the scene.

While it is possible for a suciently expressive U-net to gener-

ate depth predictions based on learned object statistics rather than

cues from optical defocus, we encourage the latter by limiting the

receptive eld of the network. The receptive eld size denes the

number of pixels in the input image which are used to generate a

depth prediction for each pixel at the output. The U-net architecture

considered in this work is shown in Figure 11b and utilizes 3x3

kernels throughout. The receptive eld size is shown in the inset

of Figure 12b. As the receptive eld is small relative to the features

in the image, we hypothesize that the U-net will be constrained

to generate predictions based primarily on defocus. Notably, we

emphasize that depth from defocus can be realized utilizing a single,

2D image as the input. Previous work on monocular depth estima-

tion (MDE), however, have utilized neural network architectures

with substantially more parameters (here, the network contains

only 1.94 M parameters) and with a larger receptive eld [Alhashim

and Wonka 2018; Eigen et al. 2014; Liu et al. 2016]. In considera-

tion of a smaller computational architecture, we are motivated to

utilize the capabilities of metasurfaces to encode two distinct PSFs

simultaneously given recent demonstrations of a low computation,
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Fig. 12. Single shot depth sensor utilizing the co-design of a metasurface

and a U-Net. The simulated system simultaneously captures two dierently

blurred images (a,b) of a scene using the setup in Figure 11. It then processes

the two images using a U-Net, which outputs the predicted depth map

(c) of the scene. The receptive field of the U-Net (orange box in (b)) is

relatively small compared the scale of image features, thus the network has

to infer depth from local features such as image defocus, instead of from

global, semantic features. During training, the metasurface cells are jointly

optimized with the U-Net parameters. The PSFs of the system before and

aer the optimization at a sample depth is shown in (e). A 2D histogram of

the predicted depth vs true depth on the 50 image testing set is displayed

in (f).

deterministic depth-from-dierential-defocus algorithm based on

two images [Alexander et al. 2016; Guo et al. 2019]. For constrained

neural architectures, co-optimization based on two images should

outperform single image estimates.

Using the nanon neural optical model and the Hankel-based ra-

dial Fresnel propagator, we inverse-design a 3 mm diameter, radially-

symmetric metasurface in conjunction with the U-net parameters.

The metasurface is initialized to focus light from depths of 0.3 m and

0.5 m at the photosensor for 0◦ and 90◦ linearly polarized light, re-

spectively. For the optimization, we generate randomly synthesized

scenes with the foreground and segmentation masks assembled

0.3 0.4 0.5 0.60.2

Depth

(m)

Initial PSFs

Optimized PSFs

Fig. 13. The simulated, initial (top) and trained (boom) PSFs for the meta-

surface used in the depth sensor, for five depth values within the optimizated

range.

from the Freiburg-Berkeley motion segmentation dataset [Ochs

et al. 2014] and the background from the COCO dataset [Lin et al.

2014]. Ground-truth depth maps consist of slanted planes. With both

the scene and true depth as model inputs {(S ,, )}=1,2,... , we

utilize a training set of approximately 5000 scene-depth pairs and

minimize the L1 loss via,

argmin
Π,Ψ

∑



U-Net (0◦ (S ), 90◦ (S )) − ,

, (31)

where  is a polarization-dependent, rendered image similar to

Equation 30 but utilizing the accelerated, slanted-plane depth ren-

dering algorithm discussed in Section 2.3. Photon noise is added to

the captured images [Hasino 2014].

In Figure 12, we display the simulated performance of the opti-

mized snapshot depth sensor for a test scene. The two predicted

images produced by the metasurface (displayed in images a,b in the

same gure) are in focus for dierent depths. The U-net successfully

learns to recover a depth map of the scene based on the two image

input, and in Figure 12f, we show a 2D histogram of the depth esti-

mation performance across the test set containing 50 scenes. Across

the optimized depth range, we nd good performance.

The initial and trained PSFs for the two polarization states are

shown in Figure 13 (the PSF for one depth is extracted and magni-

ed in Figure 12e). Remarkably, we observe that while the PSFs do

change during training, the dierences are relatively subtle. This

suggests that the U-net architecture considered here, although rel-

atively small compared to traditional MDE architectures, is still

powerful enough to work in conjunction with the optics without

having to depend heavily on nely-tuning the PSFs. Moreover, we

believe that yet smaller and simpler neural architectures may be uti-

lized in conjunction with two images and may be needed to realize

the full potential of co-optimization rather than co-design for DfD

with metasurfaces.
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5 CONCLUSION AND FUTURE OUTLOOK

In this work, we present a complete and auto-dierentiable design

framework for the co-optimization of metasurfaces and compu-

tational algorithms. We provide multiple, ecient and validated

implementations for all stages of the design pipeline: eld propaga-

tion, metasurface optical transformations, and rendering. While part

of this work’s contribution is the coherent synthesis and integration

of prior research (some disjoint to the topic of metasurfaces), we

also introduce the principle of the neural optical model–the usage

of a multilayer perceptron to dierentiably map nanoscale shapes to

their local optical response. We discuss in detail the benets of the

neural optical model as an implicit representation, relative to auto-

dierentiable eld solvers, and benchmark the performance against

alternative approaches. We nd that the neural optical model yields

state of the art accuracy while being highly generalizable; conse-

quently, it enables a new path forward for end-to-end metasurface

design.

In addition to the neural model, we also propose two new, theoret-

ical metasurface-based computational imaging systems and demon-

strate the usage of the framework to train them. We leverage the

polarization multiplexing ability of a metasurface to capture two

images in a single shot and from the same perspective, a feat which

cannot be easily done with a single optic by other means. We then

utilize this functionality to demonstrate a path for compact, incoher-

ent opto-electronic image processing based on two-pupil synthesis

and for ecient depth sensing based on a small receptive eld U-net

and depth from dierential defocus.

The source code for the framework is released as an open source

package to the community, in addition to pre-trained, ready-to-

use neural models. We believe that there is substantial room for

further explorations and demonstrations including extending the

MLP approach to higher dimensional cell shapes. New and special-

ized, adaptive sampling algorithms will likely be needed in order

to eciently generate the required training data for the MLP, as

pre-computing the optical response for all parameter combinations

will be infeasible for complicated cells. Moreover, the simple cell

libraries utilized in this work enabled a straightforward method to

impose constraints on the metasurface parameters. The develop-

ment or implementation of alternative techniques is needed when

the allowed values for the MLP inputs are conditional on one an-

other. Previous research on dispersion engineering suggests that

these higher dimensional cells are required in order to more freely

engineer the optical response with respect to incident wavelength

[Chen et al. 2018; Li et al. 2021].

While co-optimization of optical hardware and computational

parameters is not a new idea, it is our opinion that the development

of co-designedmetasurface based systems remains in a nascent stage.

The potential in applying end-to-end design of multiple images

alongside modern and emerging techniques in image processing

may likely continue to lead to the discovery of vision systems with

substantially reduced computational costs.

Table 2. Performance Per Cell Evaluation for All Surrogate Models

Optical Model # Parameters FLOPs MAE Test Set3

Poly-14-cylinder 360 717 k 0.18

Poly-17-cylinder 513 1.02 k 0.14

Poly-23-cylinder 900 2.3k 0.095

Poly-30-cylinder 1.40 k 2.8k 0.082

ERBF-32-cylinder 0.2 k 0.5 k 0.097

ERBF-64-cylinder 0.4 k 1 k 0.047

ERBF-128-cylinder 0.9 k 2 k 0.029

ERBF-256-cylinder 1.8 k 4 k 0.026

ERBF-512-cylinder 3.6 k 8 k 0.029

NO-D32-cylinder 1 k 2.8 k 0.074

NO-D64-cylinder 5 k 10 k 0.043

NO-D128-cylinder 17 k 36 k 0.024

NO-D256-cylinder 68 k 138 k 0.018

Poly-5-ns 336 666 0.20

Poly-8-ns 990 1.97 k 0.13

Poly-11-ns 2.18 k 4.36 k 0.09

Poly-15-ns 4.90 k 9.8 k 0.069

ERBF-128-ns 1.5 k 3 k 0.062

ERBF-256-ns 3 k 7 k 0.040

ERBF-512-ns 6 k 14.0k 0.036

ERBF-1024-ns 12 k 28 k 0.032

ERBF-2048-ns 25 k 55 k 0.026

NO-D32-ns 1 k 3 k 0.068

NO-D64-ns 5 k 10 k 0.047

NO-D128-ns 18 k 37 k 0.035

NO-D256-ns 68 k 139 k 0.025

NO-D512-ns 267 k 540 k 0.021

NO-D1024-ns 1.05 m 2.13 m 0.019

RCWA-(5122, 49) NA 363 m 0.062

RCWA-(5122, 81) NA 1.62 b 0.055

RCWA-(5122, 121) NA 5.38 b 0.051
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A NEURAL OPTICAL MODEL ADDITIONAL
INFORMATION

In this section, we provide additional gures for the evaluation

and analysis of the neural optical model. Discussion is provided

in the main text. In Figure 14 and 15, the transmission and phase

predictions for x- and y-polarized light incident on a 350 nm cell with

a centered nanon structure is displayed for several trained neural

optical models along with the alternative ERBF and multivariate

polynomial models. In Figure 16, predictions on the nanocylinder

cells are shown against the FDTD computed optical response. The

mean absolute error, FLOPs, and number of parameters of all models

tested in this work (some not visually shown in the gures) are listed

in Table 2.

B PROPAGATED FIELD VALIDATION

As introduced in Section 3.2 of the main document, we present one

validation for the eld propagators included in D♭ by analyzing
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Fig. 14. Similar to Figure 4a in the main paper; Neural optical models with dierent numbers of parameters in each hidden layer are trained on nanofin cells.

The predicted transmiance for dierent cells is displayed (upsampled at 4x the resolution of the training dataset) and contrasted against the ground-truth

FDTD results. Each model (each row) has two hidden, dense layers. The number of neurons in each layer corresponds to the number in the label on the le

column, i.e. Dense-1024 has two hidden, dense layers of 1024 neurons.

the intensity produced at the focal plane of various matelenses

(metasurfaceswhich are designed to focus light as diraction-limited

lenses). We consider a eld just after the metalens, assuming plane

wave incidence, according to the hyperbolic phase prole introduced

in Equation 26 of the main text:

 ( ′, 0+) = exp


− 2




 −

√
 ′2 +  2


(32)

where f is the focal length and  ′ denotes radial coordinates on

the metasurface plane,  ′ =

 ′2 + ′2. In this analysis, we assume
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Fig. 15. Similar to Figure 4a in the main paper and complementary to Figure 14. See the caption there for more details. The MLP predicted phase is contrasted

against the FDTD ground-truth data. The performance of the MLP with dierent numbers of neurons in each hidden layer is shown.

that the metalens implements the required phase-delay at each cell

exactly and without modulating the eld intensity; In other words,

we consider only the propagation of this ideal eld to the sensor

plane. In the main text of Section 3.2, this assumption is eased when

the metasurface is inverse designed to discover the placement of

nanon cells that focus light.

Here, we consider the eld on a grid after a 100  diameter

metalens with square cells of 350 nm. The grid at the sensor plane

is nely sampled at 50 nm. We consider instantiations of metal-

enses that are designed to focus light at sensor distances of 100,

150, and 200 m and for incident wavelengths  of 380, 532, and

700 nm, respectively. The intensity at the sensor plane for each case

is then computed and a central slice through the intensity proles

are shown in Figure 18. These sensor distances are chosen as they

correspond to dierent values of the imaging numerical aperture,

NA = / , where r is the radius of a circular aperture on the metal-

ens. The NA is a useful metric as it relates to the range of angles

over which the system operates. Moreover, it is understood that the

Fresnel approximation (one assumption of paraxial optics) breaks

down for large NA values. In this regime, we expect only the angular

spectrum method (ASM) to produce the correct, propagated elds.

The calculations in Figure 18 are plotted alongside the theoretic

Airy disk prole. We nd good agreement between the theoretic

Airy intensity and the propagated elds. For NA larger than 0.30,

the Fresnel approximation becomes less accurate while the radial

and 2D ASM calculations are still in strong agreement.

C INCOHERENT IMAGE DIFFERENTIATION
ADDITIONAL DETAILS

To better understand the spatial frequency lter imposed by the

metasurface based system, it is useful to consider the optical transfer

function (OTF). By taking the Fourier transform of both sides of

Equation 29 in the main text, we obtain the frequency-space relation:

0◦ − 90◦ =  · F (0◦ −  90◦ ) =  · F

 ′

, (33)

where and  denotes the Fourier transform of  and respectively.

The signicance of this representation is that it reveals that the

frequency content in the captured images  corresponds to the

frequency content in the pinhole image  modulated by a spatial

frequency lter. This spatial frequency lter is the Fourier transform

of the PSF and is referred to as the optical transfer function (OTF)

by convention. Just as we assign an eective, net PSF  ′ to the
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Fig. 16. MLP-predictions for the transmiance (top row) and phase (boom row) imparted by a 180 nm cell with 600 nm tall nanocylinders of dierent radii

placed at the center (as depicted in Fig 1b of the main document). The FDTD optical response is shown along with dierent, pre-trained neural optical models

labeled as Dense-N; the models consists of two hidden, dense layers with N neurons in each. As with the nanofins, we find a continuous trade-o between

model accuracy and number of parameters (see Table 1 in the main document for quantitative measures).

Fig. 17. Complementary to Figure 6 in the main document. The predicted intensity and phase of the field at the sensor plane is computed with D♭ using (a)

the angular spectrum method and (b) the Fresnel diraction method. In (c), the experimental measurements taken by Lim et al. and published in [Lim et al.

2021] are shown. Four dierent metasurface to sensor distances are considered.

opto-electronic system, we may dene an eective, net OTF via:

Net OTF = F

 ′

. (34)

The operation of image dierentiation is well dened in frequency

space as it corresponds to a particular, complex-valued spatial fre-

quency lter. We may then compare the net OTF of the optimized

system to this ideal lter.
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Fig. 18. See the text in Appendix B for more details. Each graph in the figure corresponds to a dierent metalens instantiation, which imparts the hyperbolic

phase profile required to focus an incident plane wave of a particular wavelength  to a particular sensor distance. A radial slice of the intensity profile at the

sensor plane is shown, as computed by the four propagators included in D♭. The analytic intensity profile prescribed by the Airy disk is also ploed in red. The

simulated calculations should match closely to the Airy profile with disagreement only for the Fresnel method at large NA.

The net PSF and the net OTF for the optimized imaging system

that applies a rst derivative to the pinhole image (section 4.1) is

displayed in Figure 19. As noted in the caption, the OTF is consistent

to the denition of a rst derivative for low spatial frequencies.

Disagreement will always occur at high frequencies and this can be

understood by recognizing that any physical, optical system must

have a high spatial frequency cut-o. This cuto may be set by the

pixel size or by the diraction-limit and suciently high frequency

components in a scene cannot be imaged. In other words, the OTF

must go to zero for high frequencies. The net PSF and the net OTF

for the second-derivative imaging system is similarly displayed in

Figure 20.
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